\qquad
\qquad

SHOW ALL WORK! THIS MEANS KUNFU!!!!

1. With a time of 6.92 s , Irina Privalova of Russia holds the women's record for running 60 m . Suppose she ran this distance with a constant acceleration, so that she crossed the finish line with a speed of $17.34 \mathrm{~m} / \mathrm{s}$. Assuming she started at rest, what was Privalova's average acceleration.

2. A handball is hit toward a wall with a velocity of $13.7 \mathrm{~m} / \mathrm{s}$ to the right. It bounces off the wall to the left with a velocity of $11.5 \mathrm{~m} / \mathrm{s}$. The ball was in contact with the wall for 0.021 seconds. What is the handball's average acceleration?

3. A type of firework consists of a cardboard tank mounted on plastic wheels and driven forward by a small rocket. Once the rocket ignites, the tank rolls from rest to a maximum velocity of $0.85 \mathrm{~m} / \mathrm{s}$ forward, at which point the rocket burns out. If the total time that the rocket remains ignited is 3.7 s , what is the average acceleration of the tank?

4. Currently the fastest production car ever made is the Bugatti Veyron EB 16.4 (Super Sport). It can accelerate from $0-60.0 \mathrm{mi} / \mathrm{hr}$ at $11.29 \mathrm{~m} / \mathrm{s}^{2}$. How long in seconds does it take the Bugatti to go from $0-60.0 \mathrm{mi} / \mathrm{hr}$?

5. The brakes of a car moving at $14 \mathrm{~m} / \mathrm{s}$ are suddenly applied and the car comes to a stop in 4 sec . (a) What was the acceleration? (b) How long would the car take to come to a stop starting from $20 \mathrm{~m} / \mathrm{s}$ with the same acceleration? (c) How long would the car take to slow down from $20 \mathrm{~m} / \mathrm{s}$ to $10 \mathrm{~m} / \mathrm{s}$ with the same acceleration?

6. A treadmill has an average acceleration of $4.7 \mathrm{E}-3 \mathrm{~m} / \mathrm{s}^{2}$. What is the velocity of the treadmill after 5 minutes? Assume it started from rest.

7. A car traveling at $+7.0 \mathrm{~m} / \mathrm{s}$ accelerates at $0.80 \mathrm{~m} / \mathrm{s}^{2}$ for 2.0 seconds. What is the final velocity of the car?
\square

8. A train comes to a stop in 3 minutes. If the train had a uniform acceleration of $-3.5 \mathrm{~m} / \mathrm{s}^{2}$ what was initial velocity of the train?

9. A stunt gazelle on a bike accelerates from rest with an average acceleration of $3.5 \mathrm{~m} / \mathrm{s}^{2}$ how long did it take the stunt gazelle to reach a velocity of $30 \mathrm{~m} / \mathrm{s}$?

10. A car accelerates from rest to $100 \mathrm{mi} / \mathrm{hr}$ with an acceleration of $8.55 \mathrm{~m} / \mathrm{s}^{2}$. How long in seconds did this take?

11. A stunt gazelle in a car slows from $100 \mathrm{~km} / \mathrm{hr}$ to $80 \mathrm{~km} / \mathrm{hr}$ in 1.2 seconds. (a) What was the acceleration in $\mathrm{m} / \mathrm{s}^{2}$? (b) If the car could maintain this acceleration how much longer would it take to come to a complete stop?
\qquad

