\qquad Name \qquad

1. How much energy will an electron gain as it moves through a potential difference of $21,000 \mathrm{~V}$ in a TV picture tube?

2. At what distance from a point charge of $+6 \mu \mathrm{C}$ would the potential equal 2.7 E 4 V ?

3. Find the potential at a distance $1 \mathbf{c m}$ from a proton.

4. In the Bohr model of the hydrogen atom an electron circles a proton in an orbit of radius $5.1 \mathrm{E}-11$ meters. Find the voltage at this position.

5. A point charge of $9 \mathrm{E}-9 \mathrm{C}$ is located at the origin. How much work is required to bring a proton from Pflugerville to a distance of $30 \mathbf{c m}$ away from the point charge?

6. What is the magnitude of the E-field 10 nm from a Carbon nucleus?

7. Draw appropriate E-field lines for the point charges shown below.

8. What is the voltage 10 nm from a Carbon nucleus?

9. What is the magnitude and direction of an E-field that just balances a suspended electron?

10. How close can an electron moving $3.2 \mathrm{E} 6 \mathrm{~m} / \mathrm{s}$ get to a stationary $-18 \rho \mathrm{C}$ charge?

11. Three point charges, q_{1}, q_{2}, and q_{3} lie along the x-axis as shown in the picture below. How far from q_{1} would q_{3} need to be placed in order for it to feel no resultant electric force?

