Electrostatics

Coulomb's Law

ELECTROSTATICS (AKA Static Electricity)

- Ordinary matter is made up of neutrons, protons, and electrons.
- The most important opening idea, electrically, is that protons and electrons have a property called "charge" which is the same size, but opposite in polarity.
- The proton has 1836 times the mass of the electron, but exactly the same size charge, only positive rather than negative.

ELECTROSTATICS (AKA Static Electricity)

- Even the terms "positive" and "negative" are arbitrary, but well-entrenched historical labels.
- The essential implication of that is that the proton and electron will strongly attract each other and two protons or two electrons will strongly repel each other:
- "like charges repel and unlike charges attract". atract.

Gravitational Force

$$
F_{g}=\frac{G m_{1} m_{2}}{r^{2}}
$$

- $\mathrm{F}_{g}=$ gravitational force (N)
- $G=$ Universal gravitational constant $=6.67 \times 10^{-11}$ $\mathrm{Nm}^{2} / \mathrm{kg}^{2}$
- m_{1} and $m_{2}=$ masses (kg)
- $r=$ distance between the center of the masses (m)

Important Info

Particle		Mass (Kg)	Charge (C)
n^{0}	neutron	1.67×10^{-27}	0
p^{+}	proton	1.67×10^{-27}	$+1.6 \times 10^{-19}$
e^{-}	electron	9.11×10^{-31}	-1.6×10^{-19}

Conservation of Charge

- One of the fundamental properties of nature is the conservation of electric charge.
- Charge tends to be naturally transferred between unlike charges.
- There are three ways to transfer charge: friction, induction, and conduction.

Transfer of Charge

- Friction: two neutral objects are rubbed against each other and one becomes negative and the other positive.
- Induction: Bring a charged object near a neutral object and the neutral object becomes oppositely charged.
- Conduction: Touch a neutral object with a charged object and the neutral object becomes similarly charged

Coulomb's Law

- The electric force between two charges is proportional to the product of their charges and inversely proportional to the square of the distance between the charges.

$$
F_{e}=\frac{K\left|q_{1} \| Q_{2}\right|}{r^{2}}
$$

$\mathrm{F}_{\mathrm{e}}=$ electric force (N)
$\mathrm{K}=$ electric constant $=9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}$
$q_{1} Q_{2}=$ charges (Coulombs, C)
$r=$ distance between charges (m)

Sample

- What is the electric force between a $3 \mu \mathrm{C}$ charge and $a-5 \mu C$ charge that are separated by $4.2 \mathrm{E}-3 \mathrm{~m}$?

$$
\begin{gathered}
F_{e}=K \frac{\left|q_{1} Q_{2}\right|}{r^{2}} \\
F_{e}=9 E 9 \frac{{N m^{2}}_{C^{2}} \frac{|(3 E-6 C)(-5 E-6 C)|}{(4.2 E-3 m)^{2}}}{F_{e}=7,653 N}
\end{gathered}
$$

Practice

Two charges a $-6 \mu \mathrm{C}$ charge and a $10 \mu \mathrm{C}$ charge experience a force of 645 N . What is the distance between the charges?

$$
\begin{gathered}
\boldsymbol{F}_{\boldsymbol{e}}=\boldsymbol{K} \frac{\left|\boldsymbol{q}_{\mathbf{1}} \mathbf{Q}_{\mathbf{2}}\right|}{\boldsymbol{r}^{2}} \\
645 N=9 E 9 \frac{N m^{2}}{C^{2}} \frac{|(-6 E-6 C)(10 E-6 C)|}{r^{2}} \\
r=0.029 m
\end{gathered}
$$

Practice

Two charges one $5 \mu \mathrm{C}$ and the other is $7 \mu \mathrm{C}$ are separated by a distance of $5.3 \mathrm{E}-4 \mathrm{~m}$. What is the electric force between these two charges?

$$
\begin{gathered}
\boldsymbol{F}_{e}=\boldsymbol{K} \frac{\left|\boldsymbol{q}_{1} \boldsymbol{Q}_{2}\right|}{\boldsymbol{r}^{2}} \\
F_{e}=9 E 9 \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}} \frac{|(5 E-6 C)(7 E-6 C)|}{(5.3 E-4 m)^{2}} \\
F_{e}=1.12 E 6 \mathrm{~N}
\end{gathered}
$$

