Electric Potential & Electric Potential Energy

Remember

Force of Gravity

$$F_g = \frac{Gm_1m_2}{r^2}$$

Electric Force

$$F_e = \frac{K|q_1||Q_2|}{r^2}$$

$$\vec{F}_{e} = q\vec{E}$$

Electric Field

$$\vec{E} = \frac{K|Q|}{r^2}$$

Electric Potential

- Electric Potential is the energy <u>per</u> charge measured in J/C (= Volt)
- Also known as Voltage, Volts, Potential Difference, and Potential

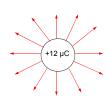
$$V = \frac{KQ}{r}$$

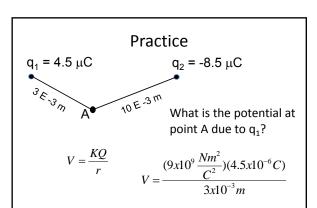
V = voltage (J/c)

K = electric constant 9 E 9 Nm²/C²

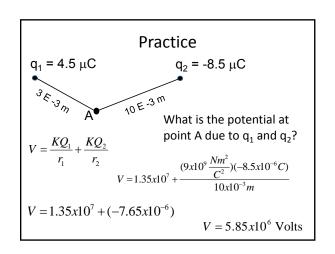
Q = charge creating the voltage

r = distance from the charge


Example


- A +12 μ C charge is held at the origin.
- What is the electric potential at a distance of 5 mm from this charge? Draw the E-Field.

$$V = \frac{KQ}{}$$


$$V = \frac{(9x10^9 \frac{Nm^2}{C^2})(12x10^{-6}C)}{5x10^{-3}m}$$

 $V = 2.16x10^7 \text{ Volts}$

 $V = 1.35 x 10^7 \text{ Volts}$

Electric Potential Energy

• *Electric Potential Energy* is the <u>total</u> energy a charge has. It is measured in Joules.

$$PE_e = q\Delta V = W$$

W = work; measured in Joules (J)

PE_e = electric potential energy; measured in Joules (J) q = charge that is moved; measured in Coulombs (C)

 ΔV = potential difference (final Voltage – initial Voltage); measured in Volts (J/C)

It is important that you notice the difference between electric potential (voltage) and electric potential energy!!!!

Example

 How much work would need to be done to move a proton from Round Rock to a point 5 mm from a 12 μC charge?

$$PE_e = q\Delta V = W$$

$$W = (1.6E - 19C) \frac{(9E9 \frac{Nm^2}{C^2})(12E - 6C)}{5E - 3m}$$

$$W = 3.46E - 12J$$

Example, cont.

 If the proton were released and allowed to move back to Round Rock, how fast would it be going?

$$PE_{o} = q\Delta V = W$$

$$PE_e = KE = 1/2mv^2$$

$$3.45x10^{-12} J = \frac{1}{2} (1.67x10^{-27} kg) v^2$$

$$4.13x10^{15} = v^2$$

$$6.43x10^7 m/s = v$$

Practice

 How much energy does an electron gain when it moves through a potential difference of -7 V?

$$PE_e = q\Delta V = W$$

$$PE_e = (-1.6E - 19C)(-7V)$$

$$PE_e = 1.12E - 18J$$