Per \qquad NAME \qquad

1. A 7 kg bowling ball collides head on with a 2 kg bowling pin. The pin flies forward with a velocity of $3 \mathrm{~m} / \mathrm{s}$. If the ball continues forward with a speed of $1.8 \mathrm{~m} / \mathrm{s}$, what was the initial velocity of the ball?

2. A 0.05 kg cue ball is traveling at $3 \mathrm{~m} / \mathrm{s}$ across a pool table collides with the 8 ball and comes to a complete stop. How fast is the 8 ball moving after the collision if its mass is 0.03 kg ?

3. Two pieces of "silly putty" are thrown toward one another and stick together after the collision. If one piece has a mass of 2 grams and is traveling with a speed of $4 \mathrm{~m} / \mathrm{s}$, and the second ball of silly putty has a mass of 3 grams and is traveling at $3 \mathrm{~m} / \mathrm{s}$ in the opposite direction, what is the speed of the combined lump of silly putty after the collision? How fast would the 3 g mass need to be traveling to bring the combination to rest?

4. A car moving at a speed of $5 \mathrm{~m} / \mathrm{s}$ crashes into an identical car stopped at a light. What is the velocity of the wreckage immediately after the collision, assuming the two cars stick together?
5. A railroad car of mass 2 E 4 kg moving with a speed of $3 \mathrm{~m} / \mathrm{s}$ collides and couples with two other coupled cars (each has the same mass as the first car) which are moving in the same direction at a speed of $1.2 \mathrm{~m} / \mathrm{s}$. What is the velocity of the three joined cars after the collision?
6. A 3 gram bullet is fired from a gun. The bullet leaves the 2 kg gun traveling at $450 \mathrm{~m} / \mathrm{s}$. With what speed does the gun recoil?

7. A child in a motionless boat throws a 3.4 kg package horizontally from the boat with a velocity of $10 \mathrm{~m} / \mathrm{s}$. If the combined mass of the child and the boat is 60 kg , how fast will the child and boat be moving after the throw?

8. A 15.0 kg sled carrying a 22.0 kg gazelle is moving with a speed of $3.50 \mathrm{~m} / \mathrm{s}$ when it collides with a snowman that is initially at rest. If the speed of the snowman, sled, and gazelle is $2.90 \mathrm{~m} / \mathrm{s}$, what is the snowman's mass?
