\qquad Name \qquad HW 2.1 Newton's Law of Universal Gravitation

USEFUL INFORMATION:

Moon-Earth distance $=3.84 \times 10^{8} \mathrm{~m}$
Earth radius $=6.38 \times 10^{6} \mathrm{~m}$
Earth mass $=5.98 \times 10^{24} \mathrm{~kg}$
Sun-Earth distance $=1.5 \times 10^{11} \mathrm{~m}$

$$
\begin{aligned}
& \text { Sun mass }=2.0 \times 10^{30} \mathrm{~kg} \\
& \text { Moon mass }=7.4 \times 10^{22} \mathrm{~kg} \\
& \text { Moon radius }=1.74 \times 10^{6} \mathrm{~m} \\
& \mathrm{G}=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}
\end{aligned}
$$

1. Calculate the force of gravity on a spacecraft $12,800,000 \mathrm{~m}$ above the Earth's surface if its mass is 1400 kg .
2. A hypothetical planet has a radius 2.5 times that of Earth, but has the same mass. What is the acceleration due to gravity near its surface?
3. At the surface of a certain planet, the gravitational acceleration g has a magnitude of $12.0 \mathrm{~m} / \mathrm{s}^{2}$. A $2.10-\mathrm{kg}$ brass ball is transported to this planet. What is (a) the mass of the brass ball on the Earth (b) on the planet; (c) the weight of the brass ball on the Earth (d) on the planet?

4. What is the radius of the planet in question 3 if it has a mass of 4.59 E 27 kg ?

5. What is the force of attraction (gravity) between a typical Bowie High School girl (mass $=50 \mathrm{~kg}$) and a typical Bowie High School boy (mass $=90 \mathrm{~kg}$) if they are sitting on a bench 0.10 m apart?

6. Calculate the value of g , the acceleration of gravity, at (a) $3200 \mathbf{m}$, and (b) $3200 \mathbf{k m}$, above the Earth's surface.
7. If the gravitational force between the electron ($9.11 \mathrm{E}-31 \mathrm{~kg}$) and the proton ($1.67 \mathrm{E}-27 \mathrm{~kg}$) in a hydrogen atom is 1.0 E-47 N, how far apart are the two particles?
8. Given that the acceleration of gravity at the surface of Mars is $3.73 \mathrm{~m} / \mathrm{s}^{2}$ and that Mars' radius is $3,400,000 \mathrm{~m}$, determine the mass of Mars.
9. Find the distance between a 0.300 kg billiard ball and a 0.400 kg billiard ball if the magnitude of the gravitational force is $8.92 \mathrm{E}-11 \mathrm{~N}$.
10. Saturn's moon Mimas has a mass of 3.8 E 19 kg and a diameter of $394,000 \mathrm{~m}$. Calculate the acceleration of gravity on Mimas.
11. Two masses \boldsymbol{m}_{1} and \mathbf{m}_{2} are separated by a distance \mathbf{r}. The force of gravitational attraction between the two masses is \mathbf{F}.
A. If \boldsymbol{m}_{1} is doubled how does \mathbf{F} change?
B. If neither of the masses is changed, but \mathbf{r} is doubled, how does \mathbf{F} change?
C. If r is not changed, but both masses are doubled, how does \mathbf{F} change?
D. If \mathbf{r} is halved and both masses are doubled, how does \mathbf{F} change?
