POWER

POWER = The RATE at which Work is done.
So work divided by time is power.

$$
P=\frac{W}{t}
$$

The Unit is Joules/Second
This has been named the watt, (for James Watt) and has the abbreviation \mathbf{W}.

1 kilowatt (kW) = 1000 Watts
1 horsepower (hp) = 746 Watts

POWER

Remember: $\mathbf{W}=$ Fd
$P=\frac{F d}{t}=\frac{F d}{t}=F v$

During Acceleration, $\Sigma \mathbf{\Sigma}=\Delta \mathrm{KE}$:

$$
P=\frac{\Sigma W}{t}=\frac{\Delta K E}{t}=\frac{1 / 2 m v_{f}^{2}-1 / 2 m v_{i}^{2}}{t}
$$

POWER

If an Object is moving Vertically,
POWER = The Time Rate at which PE_{G} is changing:

$$
P=\frac{\Delta P E_{G}}{t}=\frac{m g h}{t}=\frac{m g h}{t}=\mathrm{mgv}
$$

POWER

A 2000 kg car starts from rest and accelerates to a final speed of $25 \mathrm{~m} / \mathrm{s}$ in 15 seconds. What was the power output of the car?
$\mathbf{P}=\mathbf{W} / \mathbf{t}=\Delta K E / \mathbf{t}$
$P=\left(1 / 2 m v_{f}{ }^{2}-1 / 2 m v_{i}{ }^{2}\right) / t$
$P=\left[1 / 22000 \mathrm{~kg}(25 \mathrm{~m} / \mathrm{s})^{2}-1 / 22000 \mathrm{~kg}(0 \mathrm{~m} / \mathrm{s})^{2}\right] / 15 \mathrm{sec}$
$P=41,667$ watts

POWER

If an Object is moving against Friction on a Level Surface, POWER to overcome Friction:

$$
P=\frac{W_{F R}}{t}=\frac{m g \mu d}{t}=\frac{m g \mu d}{t}=m g \mu v
$$

If an Object is moving against Friction on an Incline, POWER to overcome Friction:
$\mathrm{P}=\frac{\mathrm{W}_{\mathrm{FR}}}{\mathrm{t}}=\frac{\mathrm{mg} \mu \mathrm{d} \cos \theta}{\mathrm{t}}=\frac{\mathrm{mg} \mu \mathrm{d} \cos \theta}{\mathrm{t}}=\mathrm{mg} \mu \mathrm{v} \cos \theta$

POWER

A 30 kg gazelle uses 900 watts to jump up 8 meters. What was its speed?

$$
\begin{aligned}
& P=m g v \\
& 900 \text { watts }=(30 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \mathrm{v} \\
& 3.06 \mathrm{~m} / \mathrm{s}=v
\end{aligned}
$$

