UNIVERSAL LAW OF GRAVITATION

- Every particle in the universe attracts every other particle with a force proportional to the product of their masses and inversely proportional to square of the distance between them.

What is the force of gravity between a gazelle with a mass of 100 kg and a lion with a mass that is 250 kg if the lion is lying in wait 100 meters from the gazelle?

$$
F_{g}=G \frac{M_{1} M_{2}}{R^{2}}
$$

$F_{g}=6.67 * 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2} \frac{(100 \mathrm{~kg})(250 \mathrm{~kg})}{(100 \mathrm{~m})^{2}}$

$$
F_{g}=1.67 * 10^{-10} \mathrm{~N}
$$

The force of gravity is also known as WEIGHT so:

$$
m g=G \frac{M_{1} M_{2}}{R^{2}}
$$

You can cancel out one mass from each side of the equation so you have:

$$
\mathrm{g}=\frac{\mathrm{GM}}{\mathrm{R}^{2}}
$$

$\mathrm{g}=$ acceleration due to gravity $\mathrm{m} / \mathrm{s}^{2}$
$\mathrm{M}=$ mass of planet (Kg)
$r=$ radius of planet (m)

$$
F_{g}=G \frac{M_{1} M_{2}}{R^{2}}
$$

$\mathrm{F}_{\mathrm{g}}=$ Force of gravity
$\mathrm{G}=$ Gravitational constant ($6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$)
$\mathrm{M}_{1}=$ mass of object 1
$M_{2}=$ mass of object 2
$\mathrm{R}=$ distance between the CENTER of the two masses

- What would happen to the force of gravity between the gazelle and the lion if the distance increased to 200 meters?
- The masses and G have not changed.
- The only change has been to the distance.

$$
\begin{gathered}
F_{g}=\left(1.67 * 10^{-10} \mathrm{~N}\right) / 2^{2} \\
F_{g}=4.18 * 10^{-11} \mathrm{~N}
\end{gathered}
$$

Practice
$F_{g}=G \frac{M_{1} M_{2}}{R^{2}}$
$F_{g}=6.67 * 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2} \frac{(5.98 E 24 \mathrm{~kg})(4.19 E 5 \mathrm{~kg})}{(6.71 E 6 \mathrm{~m})^{2}}$
$F_{g}=3.71 E 6 \mathrm{~N}$

Practice

What is the acceleration of gravity on Jupiter's moon lo?

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{lo}}=8.93 \mathrm{E} 22 \mathrm{~kg} \quad \mathrm{~g}=\frac{\mathrm{GM}}{\mathrm{R}^{2}} \\
& \mathrm{R}=1.82 \mathrm{E} 6 \mathrm{~m} \quad \\
& g=\frac{6.67 \mathrm{E}-11 \mathrm{Nm}^{2} / \mathrm{kg}^{2}(8.93 \mathrm{E} 22 \mathrm{~kg})}{(1.82 \mathrm{E} 6 \mathrm{~m})^{2}} \\
& g=1.80 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

