

Circular motion

An object that moves in a circle at constant speed is said to experience uniform circular motion.

- The magnitude of the velocity remains constant.
- The direction of the velocity is continuously changing as the object moves around the circle.
- The object is accelerating because there is a change in velocity.
This acceleration is called centripetal acceleration and it points towards the center of the circle.

Circular Velocity

$$
v=\frac{2 \pi r}{T}
$$

$v=$ velocity in a circle (m / s)
$r=$ radius of the circle (m)
$\mathrm{T}=$ period (sec/revolution)
Sometimes information is given in RPM (rev/min)
To convert RPM to sec / rev. . . . Flip and multiply by 60.
Example: The tachometer in you car reads 5000 RPM.
What is the period?

$$
T=\frac{1 \mathrm{~min}}{5000 \mathrm{rev}} \times \frac{60 \mathrm{~s}}{1 \mathrm{~min}}=0.012 \mathrm{~s} / \mathrm{rev}
$$

Sample problem

A rubber stopper on the end of a 0.5 meter long string completes 10 circles in 5 seconds. What is the velocity of the rubber stopper?

$$
\begin{aligned}
v & =\frac{2 \pi r}{T} \\
v & =\frac{2 \pi(0.5 \mathrm{~m})}{(5 \mathrm{sec} / 10 \mathrm{rev})} \\
v & =6.28 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Centripetal ACCELERATI ON

Change in speed OR direction.
Since an object moving in a circle is constantly changing direction it is constantly accelerating. Centripetal acceleration always points to the center of the circle.

$$
a_{c}=\frac{v^{2}}{r}=\frac{4 \pi^{2} r}{T^{2}}
$$

$$
\begin{aligned}
& \mathbf{a}_{\mathrm{c}}=\text { centripetal acceleration }\left(\mathrm{m} / \mathrm{s}^{2}\right) \\
& \mathrm{v}=\text { velocity }(\mathrm{m} / \mathrm{s}) \\
& \mathrm{r}=\operatorname{radius}(\mathrm{m}) \\
& \mathrm{T}=\operatorname{period}(\mathrm{sec} / \mathrm{rev})
\end{aligned}
$$

Practice

NASA uses large centrifuges to study the effects of large forces on astronauts prior to their going into space. A subject in the $20-\mathrm{g}\left(1 \mathrm{~g}=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$ centrifuge, which has a radius of 8.9 m . What is the velocity of the astronaut?

$$
\begin{array}{ll}
\mathrm{a}_{\mathrm{c}}=(20 \mathrm{~g}) * 9.8 \mathrm{~m} / \mathrm{s}^{2}=196 \mathrm{~m} / \mathrm{s}^{2} & \boldsymbol{a}_{\boldsymbol{c}}=\frac{\boldsymbol{v}^{2}}{\boldsymbol{r}} \\
\mathrm{r}=8.9 \mathrm{~m} &
\end{array}
$$

$196 \mathrm{~m} / \mathrm{s}^{2}=\frac{v^{2}}{8.9 \mathrm{~m}} \quad v=41.77 \mathrm{~m} / \mathrm{s}$

Practice

A 205/75-R-15 inch tire (diameter $=27.106$ in) rotates at 1600 rpms . What is the velocity in m / s of the tire at the outer edge?
$\mathrm{T}=(1 / 1600) * 60=0.0375 \mathrm{~s} \quad v=\frac{2 \pi r}{T}$
$\mathrm{r}=13.55 \mathrm{in}=0.344 \mathrm{~m}$
$v=\frac{2 \pi 0.344 \mathrm{~m}}{0.0375 \mathrm{~s}} \quad v=57.64 \mathrm{~m} / \mathrm{s}$

