Spherical Mirrors

Spherical Mirrors

- Spherical Mirrors reflect light.
- The ideas and principles of ray optics used with mirrors use reflection laws.
- Mirrors can create both real and virtual images that are either reduced or enlarged depending upon the location of the object.
- A mirror has two sides and two focal lengths on either side of the mirror.
- The positive focal point is in front of the mirror while the negative focal point is located behind the mirror.

Types of Mirrors

1.) Concave (converging) mirrors reflect light rays initially parallel to the principal axis so that the rays appear to converge to a focal point in front of the mirror.
2.) Convex (diverging) mirrors reflect light rays initially parallel to the principal axis so that the rays converge to a focal point located behind the mirror.

ConCAVE Mirror

ConVEX Mirror

Ray Diagrams Mirrors

To draw ray diagrams for mirrors use two of the following rays:

1. From the tip of the object horizontally toward the mirror, reflect the real ray through the focal point . . . extend the virtual ray behind the mirror.
2. From the tip through the focal point toward the mirror, reflect the real ray horizontally off of the mirror . . . extend the virtual ray behind the mirror.
3. From the tip through (\pm) $2 f$ toward the mirror, reflect back on itself . . . extend the virtual ray behind the mirror.

Concave Mirrors:
Converge light
Have + focal points

Ray 2

Object:
Real
Inverted
Minimized

