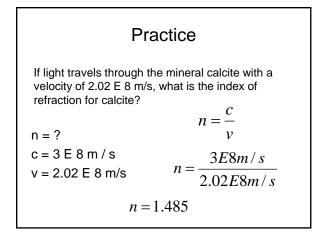
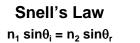

INDEX OF REFRACTION

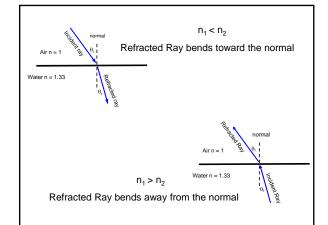

- Light travels slower the more optically dense the medium it is traveling through
- As light changes speed it changes path (refraction)

 If light moves from a less optically dense medium to a more optically dense medium it will slow down.
 - If light moves from a more optically dense medium to a less optically dense medium it will speed up.
- The ratio of the speed of light in a vacuum (3 E 8 m / s) to the speed of light in a transparent substance is known as the index of refraction. The larger the index of refraction the slower light travels.

INDEX OF REFRACTION


- n = c / v
- n = index of refraction (no units)
- c = speed of light (3 E 8 m / s)
- v = velocity of light in the transparent substance (m / s)
- n_{air} = 1 (you should memorize this!!!!)

Snell's Law (a.k.a. The Law of Refraction)


- As light passes from one transparent medium to another it's speed changes and therefore the path of the light changes (bends)
- Willebrord Snell determined the relationship between the angle of incidence and the angle of refraction as follows

- > n₁ = index of refraction of the substance that the light is traveling from
- $ightarrow \theta_i$ = angle of incidence (measured from the normal to the incident ray)
- > n₂ = index of refraction of the substance that the light is traveling into
- $> \theta_r$ = angle of refraction (measured from the normal to the refracted ray)

Snell's Law

- As light moves from a less optically dense medium to a more optically dense medium it will slow down and bend toward the normal. (n₁ < n₂)
- As light moves from a more optically dense medium to a less optically dense medium it will speed up and bend away from the normal. (n₁ > n₂)

SAMPLE PROBLEM

Light strikes water (n = 1.33) from air at an angle of 36 degrees to the vertical. What is the angle of refraction?

n ₁ = 1
n ₂ = 1.33
$\theta_i = 36^{\circ}$
$\theta_r = ?$

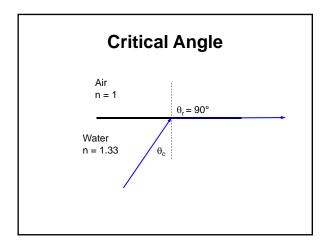
 $n_{1} \sin \theta_{i} = n_{2} \sin \theta_{r}$ $1 \sin 36^{\circ} = 1.33 \sin \theta_{r}$ $\sin \theta_{r} = (1 \sin 36^{\circ}) / 1.33$ $\sin \theta_{r} = 0.442$ $\theta_{r} = 26.23^{\circ}$

Practice

Light strikes air from ice (n = 1.31) at an angle of 25 degrees to the vertical. What is the angle of refraction?

 $n_1 = 1.30$ $n_2 = 1.00$ $\theta_i = 25^\circ$ $\theta_r = ?$
$$\begin{split} n_{1} \sin \theta_{i} &= n_{2} \sin \theta_{r} \\ 1.30 \sin 25^{\circ} &= 1.00 \sin \theta_{r} \\ \sin \theta_{r} &= (1.30 \sin 25^{\circ}) / 1.00 \\ \sin \theta_{r} &= 0.554 \\ \theta_{r} &= 33.62^{\circ} \end{split}$$

Critical Angle


- As a ray of light emerges from a more optically dense medium into a less optically dense medium it speeds up and bends away from the normal.
- As the angle of incidence increases the angle of refraction gets closer and closer to 90 degrees.
- The angle of incidence that produces a 90 degree angle of refraction is called the **critical angle**.
- If a light ray strikes the surface at an angle greater than the critical angle then a phenomenon known as total internal reflection occurs. This is how fiber optics transfer information along a glass fiber.

Critical Angle

Using Snell's Law:

$$\begin{split} n_1 & \sin \theta_c = n_2 \sin 90^{\circ} \\ \text{since } \sin 90^{\circ} = 1 \text{ you will get} \\ n_1 & \sin \theta_c = n_2 \text{ therefore:} \end{split}$$

$$\sin \theta_c = n_2 / n_1$$

SAMPLE PROBLEM

What is the critical angle for light emerging from a diamond (n = 2.42) into air?

$\theta_{c} = ?$	$\sin \theta_c = n_2 / n_1$
$n_2 = 1$ $n_1 = 2.42$	$\sin \theta_c = 1 / 2.42$
	$\sin \theta_c = 0.413$
	$\theta_{c} = 24.4^{\circ}$

Practice		
What is the critical angle for light emerging from flourite (n = 1.433) into air?		
$\theta_{c} = ?$ $n_{2} = 1$ $n_{1} = 1.433$	$sin \theta_c = n_2 / n_1$ $sin \theta_c = 1 / 1.433$ $sin \theta_c = 0.698$ $\theta_c = 40.25^\circ$	