

EQUATIONS

- If you get:
- + D_{i} then the image is REAL
- - $\mathbf{D}_{\mathbf{i}}$ then the image is VIRTUAL
- $\quad+\mathbf{H}_{\mathrm{i}}$ then the image is UPRIGHT
- $-\mathrm{H}_{\mathbf{i}}$ then the image is INVERTED
- the absolute value of $\mathbf{H}_{\mathbf{i}}<\mathbf{H}_{\mathbf{o}}$ then the image is MINIMIZED
- the absolute value of $\mathrm{H}_{\mathrm{i}}>\mathrm{H}_{\mathrm{o}}$ then the image is MAGNIFIED
- the absolute value of $\mathbf{H}_{\mathbf{i}}=\mathbf{H}_{\mathbf{o}}$ then the image is the SAME size.

Converge light
Have + focal points

EQUATIONS

$1 / D_{i}+1 / D_{o}=1 / f$
$-\left(D_{i}\right) / D_{o}=H_{i} / H_{o}=m$

- $D_{i}=$ distance from the lens or mirror to the image
- $D_{o}=$ distance from the lens or mirror to the object (always POSITIVE)
- $f=$ distance from the lens or mirror to the focal point (focal length) be sure to plug in the correct sign!!!!!!
- $m=$ magnification
- $\mathrm{H}_{\mathrm{i}}=$ height of image
- $\mathrm{H}_{\mathrm{o}}=$ height of object

SAMPLE PROBLEM

If a diverging lens has a focal length of 6 cm , describe the image formed of a $\mathbf{2 ~ c m}$ tall flower that is $\mathbf{1 2} \mathbf{~ c m}$ from the lens.

- $D_{i}=$?
- $1 / D_{i}+1 / D_{o}=1 / f$
- $D_{0}=12 \mathrm{~cm}$
- $\mathrm{f}=-6 \mathrm{~cm}$
- $1 / D_{i}+1 / 12=1 /-6$
$D_{i}=-4 \mathrm{~cm} . \ldots$. the image is VIRTUAL
(because D_{i} is negative)

SAMPLE PROBLEM, cont.

- $\mathrm{H}_{\mathrm{i}}=$?
- $-\left(D_{i}\right) / D_{o}=H_{i} / H_{o}$
- $\mathrm{H}_{0}=2 \mathrm{~cm}$
- $\mathrm{D}_{\mathrm{i}}=-4 \mathrm{~cm}$
- -(-4) $/ 12=\mathrm{H}_{\mathrm{i}} / 2$
- $\mathrm{D}_{\mathrm{o}}=12 \mathrm{~cm}$
$\mathrm{H}_{\mathrm{i}}=.667 \mathrm{~cm}$. . .the image is UPRIGHT (because H_{i} is positive) and MINI (because $\mathrm{H}_{\mathrm{i}}<\mathrm{H}_{0}$)

Practice

If a converging lens has a focal length of 10 cm , describe the image formed of a 4 cm tall flower that is 15 cm from the lens.

- $\mathrm{D}_{\mathrm{i}}=$?
- $1 / D_{i}+1 / D_{o}=1 / f$
- $\mathrm{D}_{\mathrm{o}}=15 \mathrm{~cm}$
- $\mathrm{f}=10 \mathrm{~cm}$
- $1 / D_{i}+1 / 15=1 / 10$
$D_{i}=30 \mathrm{~cm} . \ldots$. .the image is Real
(because D_{i} is positive)

Practice, cont.

- $\mathrm{H}_{\mathrm{i}}=$?
- $-\left(D_{i}\right) / D_{o}=H_{i} / H_{o}$
- $\mathrm{H}_{0}=4 \mathrm{~cm}$
- $D_{i}=30 \mathrm{~cm}$
- -(30) $/ 15=\mathrm{H}_{\mathrm{i}} / 4$
- $\mathrm{D}_{\mathrm{o}}=15 \mathrm{~cm}$
$\mathrm{H}_{\mathrm{i}}=-8 \mathrm{~cm}$. . the image is INVERTED (because H_{i} is negative) and MAX (because $\mathrm{H}_{\mathrm{i}}>\mathrm{H}_{0}$)

