Per \qquad Name \qquad

1. Homer Simpson while working at the Springfield Nuclear Power Plant uses a winch to lift a replacement fuel rod (mass = 27 kg). How long will it take Homer to lift the fuel rod 12 meters if the winch is rated at 750 W of power?
2. Bart pulls Lisa ($m=14 \mathrm{~kg}$) around the parking lot of Springfield Elementary where the coefficient of kinetic friction between Lisa and the surface of the level parking lot is 0.5 . How much power must be generated to move Lisa with a constant velocity of $7 \mathrm{~m} / \mathrm{s}$?

3. When Bart swims in the Sea at full speed he is able to generate 7 horsepower. If Bart can swim at $2.5 \mathrm{~m} / \mathrm{s}$, how much total force do his arms and legs provide?

4. A 1000 kg car moving east at $80 \mathrm{~km} / \mathrm{hr}$ collides head on with a 1500 kg car moving west at 40 $\mathbf{k m} / \mathbf{h r}$. If the two cars stick together after the collision, what is their speed and direction?

5. An over-ripe watermelon spontaneously explodes into two pieces. One piece with a mass of 2.5 kg is shot east at $22 \mathrm{~m} / \mathrm{s}$. The second piece with a mass of 1.6 kg moves to the west. What is the velocity of the second piece of watermelon?
6. Bart Simpson (mass $=23 \mathrm{~kg}$) was traveling at $12 \mathrm{~m} / \mathrm{s}$ on his skateboard when he hit the wall of Springfield Elementary. If it took 0.002 seconds to come to a complete stop, how much force did the wall provide?

7. A 0.0025 kg Junior Mint falling downward at $4 \mathrm{~m} / \mathrm{s}$ bounces off of the operating room floor. If the mint was in contact with the floor for 0.003 seconds and the floor provided a force of 6.3 N , how fast will the mint bounce upward off of the floor?

8. Homer (mass $=75 \mathrm{~kg}$) horizontally throws a life preserver (mass $=3 \mathrm{~kg}$) to Marge from the 400 kg boat that he is in. If, after the throw, the life preserver is traveling at $4 \mathrm{~m} / \mathrm{s}$ and the boat (with Homer in it) is traveling at $1 \mathrm{~m} / \mathrm{s}$ in the opposite direction from the life preserver, how fast was the boat moving originally?

9. It is well known that bullets fired at Superman ($100 \mathrm{~kg} \mathrm{)} \mathrm{simply} \mathrm{BOUNCE} \mathrm{off} \mathrm{of} \mathrm{his} \mathrm{chest}$. Suppose a gangster sprays Superman's chest with one hundred bullets, each having a mass of 0.005 kg . Each bullet is traveling at $600 \mathrm{~m} / \mathrm{s}$ when it strikes the man-of-steel's chest, and they rebound straight back in the opposite direction at $600 \mathrm{~m} / \mathrm{s}$. If Superman was initially hovering motionless in the air, how fast will he be moving after being fired upon?

10. A red bumper car (carrying Maggie) at an amusement park ride is traveling with a velocity of $0.7 \mathrm{~m} / \mathrm{s}$ when it collides with a blue bumper car (carrying Itchy) of the same mass that was originally at rest. The blue car moves away with a velocity of $0.2 \mathrm{~m} / \mathrm{s}$. What is the velocity of the red car after the collision?
