\qquad

1. What is the magnitude of the electric force between Q 1 and Q 2 in the diagram above?

2. What is the magnitude of the E-field due to $\mathbf{Q 1}$ at Point \mathbf{A} ?

3. What is the electric potential at Point A?

4. Draw the E-field around the charge shown below.

5. A charge of $-4 \mu \mathrm{C}$ exerts an attractive force of 4.20 E 3 N on a second charge that is 35 mm away. What is the magnitude of the second charge?

6. At a certain location around a charged particle there is a force of $1.81 \mathrm{E}-15 \mathrm{~N}$ acting on a magnesium nucleus (Atomic number 12). What is the magnitude of the E -field at that location?

7. What is the electric potential at a point $70 \mu \mathrm{~m}$ from a boron nucleus (Atomic number 5)?

8. How close can a proton moving at $1.4 \mathrm{E} 7 \mathrm{~m} / \mathrm{s}$ get to a stationary $45 \mu \mathrm{C}$ charge before coming to a stop?

9. Three point charges, q_{1}, q_{2}, and q_{3} lie along the x-axis as shown in the picture below. How far from q_{1} would q_{3} need to be placed in order for it to feel no resultant electric force?

Part of the test will be multiple choice part problem solving. You also need to review your notes and the online notes as there will be a number of conceptual problems.

