Physics Formulas \& Conversions Fall Final Exam

Unit 1 Speed, Velocity, \& Acceleration

$\mathrm{S}=\frac{\mathrm{d}}{\mathrm{t}} \quad \mathrm{v}=\frac{\Delta \mathrm{x}}{\mathrm{t}} \quad a=\frac{\Delta \mathrm{v}}{\Delta \mathrm{t}}=\frac{\mathrm{V}_{\mathrm{f}}-\mathrm{V}_{\mathrm{i}}}{\Delta \mathrm{t}}$

$2.54 \mathrm{~cm}=1 \mathrm{in}$	$5280 \mathrm{ft}=1 \mathrm{mi}$	$1.6 \mathrm{~km}=1 \mathrm{mi}$	$1600 \mathrm{~m}=1 \mathrm{mi}$
$1000 \mathrm{~m}=1 \mathrm{~km}$	$100 \mathrm{~cm}=1 \mathrm{~m}$	$1000 \mathrm{~mm}=1 \mathrm{~m}$	$1 \mathrm{hr}=3600 \mathrm{sec}$

Unit 2 1-D Motion
$\mathrm{V}=\mathrm{V}_{\mathrm{i}}+\mathrm{at} \quad \Delta \mathrm{X}=\mathrm{V}_{\mathrm{i}} \mathrm{t}+1 / 2 \mathrm{at}^{2} \quad \mathrm{~V}_{\mathrm{f}}^{2}=\mathrm{V}_{\mathrm{i}}^{2}+2 \mathrm{a} \Delta \mathrm{X}$
Unit 3 2-D Kinematics (projectile motion)

x	y
$\mathrm{v}_{\mathrm{x}}=\Delta \mathrm{x} / \mathrm{t}$	V_{i}
	V_{f}
	$\Delta \mathrm{y}$
	T
	a

Resolving Vectors:
$V_{x}=(h y p)(\cos \theta)$
$V_{\text {iy }}=(h y p)(\sin \theta)$

Units 4, \& 5 Forces
$F_{g}=m g=$ weight
$\Sigma \mathrm{F}=\mathrm{ma}$
$F_{f s}=F_{N} \mu_{s}$
$\mathrm{F}_{\mathrm{fk}}=\mathrm{F}_{\mathrm{N}} \mu_{\mathrm{k}}$

Resolving Forces at angles:

Unit 6 Work, Energy, and Conservation of Energy

$\mathrm{W}=\mathrm{Fd}=\operatorname{mad}=\mathrm{E}=\mathrm{Q}$
$P E_{G}=m g h$
$\Sigma \mathrm{W}=\Delta \mathrm{KE}=\left(1 / 2 m \mathrm{ff}^{2}-1 / 2 m \mathrm{vi}^{2}\right)$
$\left(\mathrm{W}=\right.$ work, $\mathrm{E}=$ Energy, $\mathrm{PE}_{\mathrm{G}}=$ gravitational potential energy, $\mathrm{KE}=$ kinetic energy, $\mathrm{Q}=$ heat $)$
Heat (Q) is created when work is done against friction.
$W_{F}=F_{F} d=F_{N} \mu d=Q_{\text {level }}=m g \mu d=Q_{\text {incline }}=m g \cos \theta \mu d$
$W_{F}=$ work against friction (J)
$\mathrm{F}_{\mathrm{F}}=$ force of friction (N)
$d=$ distance the object covers (m)
$\mathrm{F}_{\mathrm{N}}=$ normal force (N)
Qlevel = heat generated when an object slides across a level surface (J)
$\mathrm{m}=$ mass (kg)
$\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s} / \mathrm{s}$
$\mu=$ coefficient of friction (no units)
$Q_{\text {incline }}=$ heat generated when an object slides along an incline (J)
$K E=1 / 2 m v^{2}$
$P E_{s}=1 / 2 K X^{2}$

PEs = spring potential energy (J)
$\mathrm{K}=$ spring constant (N / m)
X = displacement (m)
$F=-K X$
$\mathrm{F}=$ restoring force (N)
$\mathrm{K}=$ spring constant (N / m)
$X=$ displacement of the spring from its normal resting position (m)
Trig Functions
$\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }} \quad \cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }} \quad \tan \theta=\frac{\text { opposite }}{\text { adjacent }} \quad \mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}$

