Review for Unit 4 Forces and Newton's Laws of Motion Test

Terms to know:

- Force
- Contact Force
- Field Force
- Inertia
- Acceleration
- Mass
- Weight $\left(\mathrm{F}_{\mathrm{g}}\right)$
- Action-reaction forces

Concepts to Know:

- Know Newton's three laws of motion
- Law of Inertia
\diamond Law of Acceleration (and its mathematical representation)
\checkmark Law of Interactions
- Know what a force is and what it does to an object
- Know the two types of forces, be able to describe the differences and classify examples as either field or contact forces
- Understand the relationship between force, mass and acceleration

Be able to:

- Draw and label free-body diagrams and determine net force
- Calculate the net force
- Calculate force, mass, weight and acceleration
- Determine net force: $\quad \Sigma \mathrm{F}=\mathrm{ma}$
- Weight/Force gravity: $\mathrm{F}_{\mathrm{g}}=\mathrm{mg} \quad\left(\mathrm{g}=+9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
- Write net force equations

There will be multiple choice questions as well as force problems.
\qquad

1. A car hits a guardrail and the passenger in the car is brought to rest with an acceleration of $-241 \mathrm{~m} / \mathrm{s}^{2}$. What horizontal force acts on the passenger's upper torso, which has a mass of 31 kg ?
FBD: \square
2. While fishing at the coast I yanked a fish out of the water vertically with an acceleration of $4.2 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ using a very light fishing line that had a "test" or maximum tension of 32 N . What was the mass of the fish?

3. Two aliens are accelerated horizontally at a rate of $2 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ when a strange force of 410 N is applied to the rope as shown in the picture. If Alien B has a mass of 90 kg , what is the mass of Alien A?

4. The engine of a 1350 kg car provides a horizontal force of 4500 N . What is the car's acceleration?

5. A horizontal force of 400 N is applied to a box containing patriotic gazelle costumes for the gazelles' "March for America". If the acceleration of the box is $5 \mathrm{~m} / \mathrm{s} / \mathrm{s}$, what is the mass of the box?

FBD:

6,7. Two blocks are fastened to the ceiling of an elevator as shown. The acceleration of the system is $2.0 \mathrm{~m} / \mathrm{s}^{2}$.
Find T1 and T2.

T1
T2

