Scalars and Vectors

Describing Motion with Words

- We will devote the next several months to learning about the physics of motion.
- As we focus on the language, principles, and laws which describe and explain the motion of objects, your efforts should center around internalizing the meaning of the information.
- Avoid memorizing the information; and avoid abstracting the information from the physical world which it describes and explains.
- Rather, contemplate the information, thinking about its meaning and its applications.

Kinematics

- Kinematics is the science of describing the motion of objects using words, diagrams, numbers, graphs, and equations.
- The goal of any study of kinematics is to develop sophisticated mental models which serve us in describing (and ultimately, explaining) the motion of real-world objects.

Scalars

- Scalars are quantities which are fully described by a magnitude alone
- Distance is a scalar quantity which refers to "how much ground an object has covered" during its motion.
- Speed is a scalar quantity which refers to "how fast an object is moving."
- A fast-moving object has a high speed while a slow-moving object has a low speed.
- An object with no movement at all has a zero speed.

Vectors

- Vectors are quantities which are fully described by both a magnitude and a direction.
- Displacement is a vector quantity which refers to "how far out of place an object is"; it is the object's change in position ($\Delta \mathrm{X}, \Delta \mathrm{Y}, \Delta \mathrm{d}$)
- Velocity is a vector quantity which refers to "the rate at which an object changes its position." (V)

Displacement

I walk 4 meters East, 2 meters South, 4 meters West, and finally 2 meters North.

Even though I walked a total distance of $\mathbf{1 2}$ meters, my displacement is 0 meters.
Displacement, being a vector quantity, must give attention and regard to direction.
The 4 meters east is canceled by the 4 meters west; and the 2 meters south is canceled by the $\mathbf{2}$ meters north.

Practice

If you want to travel 250 mi in 4.5 hours what must be your average speed in meters per second?
$\mathrm{S}=$?
$\mathrm{d}=250 \mathrm{mi}$
$\mathrm{t}=4.5 \mathrm{hr}$

$$
s=\frac{d}{t}
$$

$$
s=\frac{250 m i}{4.5 h r}
$$

$$
s=55.56 \mathrm{mi} / \mathrm{hr}
$$

$$
\begin{array}{c|c|l}
55.56 \mathrm{msi} & 1600 \mathrm{~m} & 1 \mathrm{hr} \\
\hline 1 \mathrm{hr} & 1 \mathrm{mi} & 3600 \mathrm{~s}
\end{array}
$$

$$
\mathrm{s}=24.69 \mathrm{~m} / \mathrm{s}
$$

Practice

You maintain an average speed of $25 \mathrm{~m} / \mathrm{s}$. How long (in minutes) does it take you to travel 34 km ?

$$
\begin{aligned}
& \mathrm{t}=\text { ? } \mathrm{min} \\
& t=1360 s \\
& \begin{array}{c|l}
1360 \$ & 1 \mathrm{~min} \\
\hline 1 & 60 \mathrm{~s}
\end{array} \\
& t=22.67 \mathrm{~min}
\end{aligned}
$$

