Velocity
- Velocity is speed with a direction.
- To fully describe the velocity of an object
direction information must be included.
$>+$ means up or right
$>-$ means down or left
$>+$ north or east
$>-$ means south or west
- Speed is a scalar and does not keep track of
direction; velocity is a vector and is direction-
aware

Average Velocity

- Average velocity is the rate of change in position.
- The change in position is more commonly called the displacement.

$$
\stackrel{\varpi}{v}=\frac{\Delta x}{t} \quad \begin{aligned}
& \stackrel{\omega}{V}=\text { average velocity } \\
& \Delta \mathbf{X}=\text { displacement } \\
& \mathrm{t}=\text { time }
\end{aligned}
$$

Calculating Avg. Speed \& Velocity

The skier moves from A to B to C to D. Use the diagram to determine the average speed and the average velocity in m / s of the skier during these three minutes.

Calculating Avg. Speed \& Velocity

$$
\begin{aligned}
& \begin{aligned}
\mathrm{s}=\frac{\mathrm{d}}{\mathrm{t}} \quad \mathrm{~s} & =\frac{180 \mathrm{~m}+\mathbf{1 4 0 \mathrm { m } + 1 0 0 \mathrm { m }}}{180 \mathrm{~s}} \\
& =2.3 \mathrm{~m} / \mathrm{s}
\end{aligned} \\
& \stackrel{\varpi}{v}=\frac{\Delta x}{t} \\
& \stackrel{\varpi}{v}=\frac{140 m}{180 s} \\
& =0.78 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Practice

A gazelle travels 360 meters due south and then turns and travels 410 meters due north. After grazing for a while the gazelle travels 920 meters due south. What is the gazelle's displacement?

$$
\Delta X=-360 m+410 m+-920 m \quad \Delta X=-870 m
$$

If it took the gazelle 20 minutes for the entire trip, what was the gazelle's average velocity?

$$
\varpi=\frac{\Delta x}{v} \quad \begin{aligned}
& \stackrel{\varpi}{v}=\frac{-870 \mathrm{~m}}{1200 \mathrm{~s}} \\
& \stackrel{\omega}{v}=-0.725 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

