Uniform Acceleration

- Acceleration is a vector quantity which is defined as "the rate at which an object changes its velocity." An object is accelerating if it is changing its velocity.
- Uniform or constant acceleration is a type of motion in which the velocity of an object changes by an equal amount in every equal time period.
- A common example of uniform acceleration is an object in 'free-fall'.

Acceleration

Observe the animation of the three cars below. Which car or cars (red, green, and/or blue) are undergoing an acceleration?

The green and blue cars are undergoing acceleration.

Acceleration

- Acceleration has to do with changing how an object is moving.
- If an object is not changing its velocity, then the object is not accelerating.

Time (s)	Velocity $(\mathrm{m} / \mathrm{s})$
0	0
1	10
2	20
3	30
4	40
5	50

The velocity in the table is changing with respect to time. In fact, the velocity is changing by a constant amount ($10 \mathrm{~m} / \mathrm{s}$) in each second of time.

The slope of a velocity-time graph equals the average acceleration

The acceleration of any object is calculated using the equation
Avg. acceleration $=\frac{\Delta \text { velocity }}{\Delta \text { time }}=\frac{\mathrm{V}_{\mathrm{f}}-\mathrm{V}_{\mathrm{i}}}{\Delta \mathrm{t}}$
Acceleration values are expressed in units of velocity/time.
Typical acceleration units include the following: $\mathrm{m} / \mathrm{s} / \mathrm{s}, \mathrm{mi} / \mathrm{hr} / \mathrm{s}, \mathrm{km} / \mathrm{hr} / \mathrm{s}$

- Since acceleration is $\Delta \mathrm{v} / \mathrm{t}$, its units would be velocity units per time units.
- This is written as $\mathrm{m} / \mathrm{s}^{2}$
- Since acceleration is a vector quantity, it will always have a direction associated with it. The direction of the acceleration vector depends on two things:
- whether the object is speeding up or slowing down
- whether the object is moving in the + or direction
- The general RULE OF THUMB is:
- If an object is slowing down, then its acceleration is in the opposite direction of its motion.

Sample Problem

- While escaping a cheetah a gazelle initially moving at $5 \mathrm{~m} / \mathrm{s}$ accelerates at a rate of $2 \mathrm{~m} / \mathrm{s}^{2}$ for 6 seconds. What was the final velocity of the gazelle?

$$
\begin{array}{ll}
v_{i}=5 \mathrm{~m} / \mathrm{s} \\
a=2 \mathrm{~m} / \mathrm{s}^{2} & a_{a v g}=\frac{v_{f}-v_{i}}{\Delta t} \\
\begin{array}{l}
\Delta t=6 \mathrm{~s} \\
v_{f}=?
\end{array} & 2 \mathrm{~m} / \mathrm{s}^{2}=\frac{v_{f}-5 \mathrm{~m} / \mathrm{s}}{6 \mathrm{~s}} \\
12 \mathrm{~m} / \mathrm{s} & =v_{f}-5 \mathrm{~m} / \mathrm{s} \\
v_{f} & =17 \mathrm{~m} / \mathrm{s}
\end{array}
$$

Practice Problem

- A car traveling $40 \mathrm{mi} / \mathrm{hr}$ comes to a complete stop in 3 seconds. What was its acceleration in $\mathrm{m} / \mathrm{s}^{2}$?

$$
v_{i}=-40 \mathrm{mi} / \mathrm{h} r=17.78 \mathrm{~m} / \mathrm{s}
$$

$a=\frac{v_{f}-v_{i}}{\Delta t}$ $v_{f}=-0 \mathrm{mi} / \mathrm{hr} \rightarrow=0 \mathrm{~m} / \mathrm{s}$ $\Delta t=3 \mathrm{sec}$
$a=$?

40 nvi	1600 m	1 hy
1 hr	1 mix	3600 s

$a_{a v g}=\frac{0 \mathrm{~m} / \mathrm{s}-17.78 \mathrm{~m} / \mathrm{s}}{3 \mathrm{~s}}=-5.93 \mathrm{~m} / \mathrm{s}^{2}$

Practice Problem

- In 1954 Col. Stapp did a variety of tests for the military to determine the limits of the human body under extreme acceleration. In one rocket sled test he went from 1020 $\mathrm{km} / \mathrm{hr}$ to rest in the small time of 1.4 seconds. What acceleration did he experience as he came to a stop?

Practice Problem

$$
\begin{aligned}
& v_{i}=1020 \mathrm{~km} / \mathrm{hr} \quad v_{i}=283.33 \mathrm{~m} / \mathrm{s} \\
& v_{f}=0 \mathrm{~m} / \mathrm{s} \\
& \Delta t=1.4 \mathrm{sec} \\
& a=\text { ? } \\
& a_{\text {avg }}=\frac{v_{f}-v_{i}}{\Delta t} \quad a=\frac{0 \mathrm{~m} / \mathrm{s}-283.33 \mathrm{~m} / \mathrm{s}}{1.4 \mathrm{~s}} \\
& a=-202.38 m / s^{2} \quad a=-20.65 g
\end{aligned}
$$

