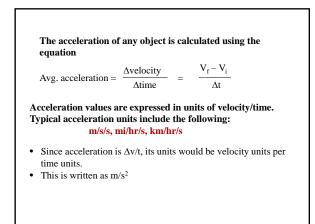

Uniform Acceleration


- Acceleration is a vector quantity which is defined as "the rate at which an object changes its velocity." An object is accelerating if it is changing its velocity.
- Uniform or constant acceleration is a type of motion in which the velocity of an object changes by an equal amount in every equal time period.
- A common example of uniform acceleration is an object in '*free-fall*'.

Acceleration		
Observe the animation of the three cars below. Which car or cars (red, green, and/or blue) are undergoing an acceleration?		

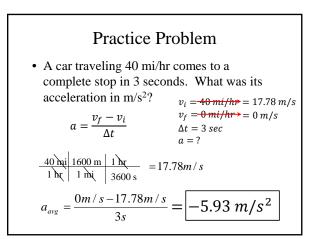
The velocity in the table is changing with respect to time. In fact, the velocity is changing by a constant amount (10 m/s) in each second of time.

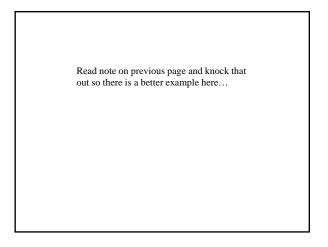
- Since acceleration is a vector quantity, it will always have a direction associated with it. The direction of the acceleration vector depends on two things:
 - whether the object is speeding up or slowing down
 - whether the object is moving in the + or direction
- The general RULE OF THUMB is:
 If an object is slowing down, then its acceleration is in the opposite direction of its motion.

Sample Problem

• While escaping a cheetah a gazelle initially moving at 5 m/s accelerates at a rate of 2 m/s² for 6 seconds. What was the final velocity of the gazelle?

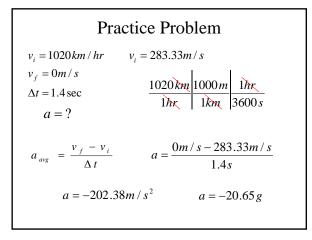
 $v_i = 5 m/s$ $a = 2 m/s^2$


$$_{vg} = - \frac{1}{2}$$


 $\Delta t = 6 s$ $v_f = ?$

 $a_{avg} = \frac{v_f - v_i}{\Delta t}$ $2m/s^2 = \frac{v_f - 5m/s}{6s}$

$$12m/s = v_f - 5m/s$$


 $v_{f} = 17 m / s$

Practice Problem

• In 1954 Col. Stapp did a variety of tests for the military to determine the limits of the human body under extreme acceleration. In one rocket sled test he went from 1020 km/hr to rest in the small time of 1.4 seconds. What acceleration did he experience as he came to a stop?

