Helpful Reminders:

Kinematic Equations

- Remember kinematics is the science of describing the motion of objects using words, diagrams, numbers, graphs, and equations.
- The kinematic equations are a set of three equations which can be utilized to determine unknown information about an object's motion if other information is known.
- The equations can be utilized for any motion which can be described as being either a constant velocity motion (an acceleration of $0 \mathrm{~m} / \mathrm{s}^{2}$) or a constant acceleration motion.

Kinematic Equations

- Remember kinematics is the science of describing the motion of objects using words, diagrams, numbers, graphs, and equations.
- The kinematic equations are a set of three equations which can be utilized to determine unknown information about an object's motion if other information is known.
- The equations can be utilized for any motion which can be described as being either a constant velocity motion (an acceleration of $0 \mathrm{~m} / \mathrm{s}^{2}$) or a constant acceleration motion.
- The kinematic equations can never be used over any time period during which the acceleration is changing.
- There are a variety of quantities associated with the motion of objects - displacement, velocity (final and initial), acceleration, and time.
- Each of the kinematic equations includes four of these variables; if the values of three of the four variables are known, then the value of the fourth variable can be calculated.

First Kinematic Equation

$$
v_{f}=v_{i}+a t
$$

Where:

$$
\begin{array}{ll}
\nu_{f}=\text { final velocity } & \boldsymbol{Q}=\text { acceleration } \\
\nu_{i}=\text { initial velocity } & \boldsymbol{t}=\text { time }
\end{array}
$$

Third Kinematic Equation

$$
v_{f}^{2}=v_{i}^{2}+2 a \Delta x
$$

Where:

$$
\begin{array}{lrl}
v_{f}=\text { final velocity } & \boldsymbol{a} & =\text { acceleration } \\
v_{i}=\text { initial velocity } & \Delta x & =\text { displacement }
\end{array}
$$

Second Kinematic Equation

$$
\Delta x=v_{i} t+1 / 2 a t^{2}
$$

Where:

$$
\begin{aligned}
\Delta x & =\text { displacement } & \boldsymbol{a} & =\text { acceleration } \\
v_{i} & =\text { initial velocity } & \boldsymbol{t} & =\text { time }
\end{aligned}
$$

Kinematic Equations and Problem Solving

1. Construct an informative diagram of the physical situation. (Draw a picture.)
2. Identify and list the known information in variable form.
3. Identify and list the wanted unknown information in variable form, make a note of the unnecessary unknown info.

Kinematic Equations and Problem Solving

4. Choose the naked formula based on what variable it leaves out.
5. Substitute known values with units into the equation and use appropriate algebraic steps to solve for the unknown information.
6. Check your answer to insure that it is reasonable and mathematically correct.

Example A

- Ima Hurryin is approaching a stoplight moving with a velocity of $+30.0 \mathrm{~m} / \mathrm{s}$. The light turns yellow, and lIma applies the brakes and skids to a stop. If lIma's acceleration is $\mathbf{- 8 . 0 0 ~ m} / \mathrm{s}^{2}$, then determine the displacement of the car during the skidding process. (Note that the direction of the velocity and the acceleration vectors are denoted by a + and a - sign.)

$$
v_{f}^{2}=v_{i}^{2}+2 a \Delta x
$$

Insert the correct values and solve.

$$
\begin{aligned}
&(0 \mathrm{~m} / \mathrm{s})^{2}=(30 \mathrm{~m} / \mathrm{s})^{2}+2\left(-8.0 \mathrm{~m} / \mathrm{s}^{2}\right) \Delta X \\
& 0 \mathrm{~m}^{2} / \mathrm{s}^{2}= 900 \mathrm{~m}^{2} / \mathrm{s}^{2}+\left(-16.0 \mathrm{~m} / \mathrm{s}^{2}\right) \Delta X \\
&-900 \mathrm{~m}^{2} / \mathrm{s}^{2}=\left(-16.0 \mathrm{~m} / \mathrm{s}^{2}\right) \Delta X \\
& \frac{-900 \mathrm{~m}^{2} / \mathrm{s}^{2}}{-16 \mathrm{~m} / \mathrm{s}^{2}}=\Delta x \\
& \Delta x=56.25 \mathrm{~m}
\end{aligned}
$$

Example B

-Ben Rushin is waiting at a stoplight. When it finally turns green, Ben accelerated from rest at a rate of a $6.00 \mathrm{~m} / \mathrm{s}^{2}$ for a time of 4.10 seconds. Determine the displacement of Ben's car during this time period.

Diagram the problem Determine known and unknown

$$
\begin{array}{rlrl}
V_{i} & =0 \mathrm{~m} / \mathrm{s} & a & =6.0 \mathrm{~m} / \mathrm{s}^{2} \\
t & =4.10 \mathrm{~s} & \Delta X & =? ? ?
\end{array}
$$

Chose the correct kinematic equation:

$$
\Delta x=v_{i} t+\frac{1}{2} a t^{2}
$$

Will Bambi Survive????

Mr. Evans is traveling at $70 \mathrm{mi} / \mathrm{hr}$; as he rounds a curve he sees Bambi standing in the road 75 meters away. He hits his brakes with an acceleration of $-4.8 \mathrm{~m} / \mathrm{s}^{2}$. Can he stop or will Bambi be on the road kill menu at the cafeteria?

Will Bambi Survive????

Known:	Unknown:	
V_{i}	$=70 \mathrm{mi} / \mathrm{hr}$	$V_{f}=? ?$
ΔX	$=75 \mathrm{~m}$	$\boldsymbol{t}=? ?$
$\boldsymbol{a}=-4.8 \mathrm{~m} / \mathrm{s}^{2}$		

$$
\begin{aligned}
V_{f} & =V_{i}+a t \\
\Delta X & =V_{i} t+1 / 2 a t^{2} \\
V_{f}^{2} & =V_{i}^{2}+2 a \Delta X
\end{aligned}
$$

You might choose to use the $3^{\text {rd }}$ Kinematic equation:

$$
\begin{gathered}
V_{f}^{2}=V_{i}^{2}+2 a \Delta X \\
V_{f}^{2}=(31.1 \mathrm{~m} / \mathrm{s})^{2}+2\left(-4.8 \mathrm{~m} / \mathrm{s}^{2}\right) 75 \mathrm{~m} \\
V_{f}=+/-15.72 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Which means not only did Mr. Evans run over Bambi, but he backed up and ran over Bambi from the other direction!!

Practice

- A Ferrari traveling $35 \mathrm{~m} / \mathrm{s}$ to the west comes to a stop in 3.4 seconds. What was the Ferrari's acceleration?
Or you could choose to use the $3^{\text {rd }}$ Kinematic equation and set the final velocity to $0 \mathrm{~m} / \mathrm{s}$; solve for displacement to see if it is less than or greater than 75 meters:

$$
V_{f}^{2}=V_{i}^{2}+2 a \Delta X
$$

$$
(0 m / s)^{2}=(31.1 m / s)^{2}+2\left(-4.8 m / s^{2}\right) \Delta X
$$

$$
100.75 m=\Delta X
$$

Which means Bambi did not survive!!
\(\left.\begin{array}{cc}Known: \& Unknown:

V_{i}=-35 \mathrm{~m} / \mathrm{s} \& \boldsymbol{a}=?\end{array}\right]\)| | |
| :--- | :---: |
| $V_{f}=0 \mathrm{~m} / \mathrm{s}$ | $V_{f}=V_{i}+a t$ |
| $t=3.4 \mathrm{~s}$ | $0 \mathrm{~m} / \mathrm{s}=-35 \mathrm{~m} / \mathrm{s}+a 3.4 \mathrm{~s}$ |

$35 \mathrm{~m} / \mathrm{s}=a 3.4 \mathrm{~s}$
$a=10.29 \mathrm{~m} / \mathrm{s}^{2}$

