Solving For Time When the Initial Velocity is Not Zero

$$
\begin{array}{rlrl}
\Delta y & =-30.0 \mathrm{~m} & & \Delta y=v_{t} \cdot t+\frac{1}{2} a \cdot t^{2} \\
v_{i} & =3 \mathrm{~m} / \mathrm{s} & & \\
\left(v_{f}\right) & =-24.43 \mathrm{~m} / \mathrm{s} & \left.v_{f}\right)^{2}=v_{i}^{2}+2 a \cdot \Delta y \\
a & =-9.8 \mathrm{~m} / \mathrm{s}^{2} & v_{f} & =v_{i}+a \because t \\
t & =? & &
\end{array}
$$

$$
v_{f}^{2}=(3 \mathrm{~m} / \mathrm{s})^{2}+2\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(-30 \mathrm{~m})
$$

$$
v_{f}^{2}=9+588
$$

$$
v_{f}=\sqrt{597}
$$

$$
v_{f}=-24.43 \mathrm{~m} / \mathrm{s}
$$

Sample Problem 2

Laying on the second floor in the F Wing a Bowie student spits up into to the air. The phlegm leaves his mouth at $7.50 \mathrm{~m} / \mathrm{s}$. How long do the unfortunate students 4.0 meters below have to get out of harm's way?

$$
\begin{aligned}
\Delta y & =-4.0 \mathrm{~m} \\
v_{i} & =7.50 \mathrm{~m} / \mathrm{s} \\
v_{f} & = \\
a & =-9.8 \mathrm{~m} / \mathrm{s}^{2} \\
t & =?
\end{aligned}
$$

$\Delta y=-4 m$
$v_{i}=7.5 \mathrm{~m} / \mathrm{s}$

$v_{f}=-11.60 \mathrm{~m} / \mathrm{s}$
$a=-9.8 \mathrm{~m} / \mathrm{s}^{2}$
$t=$?

$v_{f}^{2}=(7.5 \mathrm{~m} / \mathrm{s})^{2}+2\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(-4 \mathrm{~m})$
$v_{f}^{2}=56.25+78.4$

$$
\begin{aligned}
\Delta y & =-30.0 \mathrm{~m} \\
v_{i} & =3 \mathrm{~m} / \mathrm{s} \\
v_{f} & =-24.43 \mathrm{~m} / \mathrm{s} \\
a & =-9.8 \mathrm{~m} / \mathrm{s}^{2} \\
t & =? \\
& \\
\qquad r & \\
-24.43 \mathrm{~m} / \mathrm{s} & =3 \mathrm{~m} / \mathrm{s}+\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right) t \\
+9.8 t & =+24.43+3 \\
t & =\frac{27.43}{9.8} \\
& t=2.8 \mathrm{~s}
\end{aligned}
$$

$>$ A stone is dropped from a helicopter while the helicopter is rising with a constant velocity of $3.0 \mathrm{~m} / \mathrm{s}$. If the stone was dropped from a height of 30.0 meters how long will it take for the rock to reach the ground?

$$
\begin{aligned}
\Delta y & =-30.0 \mathrm{~m} \\
v_{i} & =3 \mathrm{~m} / \mathrm{s} \\
y_{f} & = \\
a & =-9.8 \mathrm{~m} / \mathrm{s}^{2} \\
t & =?
\end{aligned}
$$

$$
\begin{aligned}
\Delta y & =-4.0 \mathrm{~m} \\
v_{i} & =7.5 \mathrm{~m} / \mathrm{s} \\
v_{f} & =-11.60 \mathrm{~m} / \mathrm{s} \\
a & =-9.8 \mathrm{~m} / \mathrm{s}^{2} \\
t & =? \\
-11.60 \mathrm{~m} / \mathrm{s} & =7.5 \mathrm{~m} / \mathrm{s}+\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right) t \\
+9.8 t & =+11.60+7.5 \\
t & =\frac{19.1}{9.8} \\
t & =1.95 \mathrm{~s}
\end{aligned}
$$

Practice

- The cliff diving gazelle is at it again This time it jumps straight downward with a velocity of $4 \mathrm{~m} / \mathrm{s}$. If cliff was 30 meters high, how long was the gazelle in the air?

