Solving For Time When the Initial Velocity is Not Zero

QUADFORM
 TO THE RESCUE

(we will discuss an alternate method as well...)

- A stone is dropped from a helicopter while the helicopter is rising with a constant velocity of $3.0 \mathrm{~m} / \mathrm{s}$. If the stone was dropped from a height of 30.0 meters how long will it take for the rock to reach the ground?
$\mathrm{v}_{\mathrm{i}}=3.0 \mathrm{~m} / \mathrm{s}$
$\Delta \mathrm{y}=-30 \mathrm{~m}$
$\mathrm{a}=-9.8 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{t}=$?

$$
-30 \mathrm{~m}=(3.0 \mathrm{~m} / \mathrm{s}) \mathrm{t}+\frac{1}{2}\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \mathrm{t}^{2}
$$

$$
\text { 4.9 } t^{2}-3.0 t-30=0
$$

Quadratic equation
$a x^{2}+b x+c=0$

Solving with the quadratic equation:

$$
\begin{gathered}
\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
\frac{-(-3) \pm \sqrt{3^{2}-4(4.9)(-30)}}{2(4.9)}
\end{gathered}
$$

Do a bunch of math and you get two answers:

```
2.80 sec and -2.19 sec
```

Always choose the positive answer. Time is never negative. If both positive choose the reasonable answer for the problem.

QUADFORM

Or you could choose to use Quadform. A Ti calculator program that solves the quadratic equation for you.

$$
4.9 t^{2}-3.0 t-30=0
$$

Quadratic equation: $a x^{2}+b x+c=0$
Use the quadform program on your calculator!!!!! If you don't have it; get it.

Enter these variables:

$$
\begin{aligned}
& A=4.9 \\
& B=-3.0 \\
& C=-30
\end{aligned}
$$

Note: If you mess up the signs for v_{i} or Δy then the roots you get will not be correct!!!!!!!!!!!

Practice

- The cliff diving gazelle is at it again This time it jumps straight downward with a velocity of $4 \mathrm{~m} / \mathrm{s}$. If cliff was 30 meters high, how long was the gazelle in the air?
up into to the air. The phlegm leaves his mouth at $7.50 \mathrm{~m} / \mathrm{s}$ How long do the unfortunate students 4.0 meters below have to get out of harm's way.

$$
\begin{aligned}
& v_{i}=+7.5 \mathrm{~m} / \mathrm{s} \\
& \Delta y=-4.0 \mathrm{~m} \\
& a=-9.8 \mathrm{~m} / \mathrm{s}^{2} \\
& t=\text { ? } \\
& A=4.9 \\
& B=-7.5 \\
& \text { C }=-4.0 \\
& -4.0 \mathrm{~m}=(7.5 \mathrm{~m} / \mathrm{s}) t+\frac{1}{2}\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2} \\
& \text { A }=4.9 \\
& \text { C }=-4.0 \\
& 4.9 t^{2}-7.5 t-4.0=0 \\
& \text { Roots }=+1.95 \text { s and }-0.419 \mathrm{~s} \\
& v_{i}=+7.5 \mathrm{~m} / \mathrm{s} \\
& \Delta y=v_{i} t+\frac{1}{2} a^{2} \\
& a=-9.8 \mathrm{~m} / \mathrm{s}^{2} \\
& t=\text { ? }
\end{aligned}
$$

Sample Problem 2

Laying on the second floor in the F Wing a Bowie student spits

$$
\begin{array}{cc}
\text { Known: } & \text { Unknown: } \\
\begin{array}{cl}
V_{i} & =-4 \mathrm{~m} / \mathrm{s}
\end{array} & t=? ? \\
a=-9.8 \mathrm{~m} / \mathrm{s}^{2} & \Delta y=V_{i} t+\frac{1}{2} a t^{2} \\
\Delta y=-30 \mathrm{~m} & \\
& \\
& \\
& 4.30 m=(-4 \mathrm{~m} / \mathrm{s}) t+\frac{1}{2}\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2}+4 t-30=0
\end{array}
$$

Using quadform: $\mathbf{t}=\mathbf{2} .1 \mathrm{~s}$; or $\mathbf{- 2 . 9 2} \mathrm{s}$. We always use the positive root ... so $t=2.1 \mathrm{~s}$ is the answer.

