Unit 3 Vectors \& Projectile Motion

Also Known as 2-D Kinematics

Vector Addition

$$
\begin{aligned}
& \xrightarrow{5}+\xrightarrow{5}=\xrightarrow{10} \\
& \xrightarrow{5}+\stackrel{-5}{\leftrightarrows}=0 \\
& \xrightarrow{5}+\xrightarrow{10}=\xrightarrow{15} \\
& \xrightarrow{5}+\stackrel{-10}{\stackrel{-5}{4}} \\
& \xrightarrow{5}+\stackrel{-15}{\longleftarrow}=\stackrel{-10}{\longleftarrow} \\
& \left.\left.\left.{ }^{10}\right\rceil+-5\right\rceil=5\right\rceil
\end{aligned}
$$

- Vector quantities are often represented by vector diagrams.
- An arrow (with arrowhead) is drawn in a specified direction; thus, the vector has a head (tip) and a tail.
- The magnitude and direction of the vector is clearly labeled.
- The length of the arrow indicates the magnitude of the vector.
- Sooo...vector arrows give the magnitude and direction \qquad \longrightarrow

From Point A you travel 4 km east to point B and then turn south and travel 5 km south to point C . What is the magnitude of your displacement? Vectors are drawn tip to tail.

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& (4 \mathrm{~km})^{2}+(5 \mathrm{~km})^{2}=c^{2} \\
& c=\sqrt{16+25} \\
& c=6.4 \mathrm{~km}
\end{aligned}
$$

You then continue traveling south for another 3 km to Point D. What is the magnitude of your displacement from your original starting point A?

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& (4 k m)^{2}+(8 k m)^{2}=c^{2} \\
& c=\sqrt{16+64} \\
& c=8.94 \mathrm{~km}
\end{aligned}
$$

$$
a^{2}+b^{2}=c^{2}
$$

$(45 \mathrm{~km} / \mathrm{hr})^{2}+(25 \mathrm{~km} / \mathrm{hr})^{2}=V^{2}$
$\sqrt{2025 \mathrm{~km}^{2} / \mathrm{hr}}{ }^{2}+625 \mathrm{~km}^{2} / \mathrm{hr} r^{2}=V$
$51.48 \mathrm{~km} / \mathrm{hr}=V$

Resolving Vectors

You travel 30 meters at an angle that is 25° north of east. Resolve this vector into its components

$$
\sin 25^{\circ}=\frac{\Delta y}{30 m}
$$

$(30 m) \sin 25=4 y$
$12.68 m=\Delta y$
$\cos 25^{\circ}=\frac{\Delta x}{30 m}$
$(30 \mathrm{~m}) \cos 25=\Delta x$
$27.19 m=\Delta x$

