

Review

Free fall
(in the y -direction)

$$
\downarrow \begin{gathered}
\Delta y=v_{i} \cdot t+\frac{1}{2} a \cdot t^{2} \\
v_{f}^{2}=v_{i}^{2}+2 a \cdot \Delta y \\
v_{f}=v_{i}+a \cdot t
\end{gathered}
$$

Review

1-D motion in the x-direction (without acceleration...)

$$
\begin{array}{lll}
\Delta x= & & \begin{array}{l}
\Delta x= \\
v_{i}=
\end{array} \\
v_{x}= \\
= & \bigcirc \longrightarrow & t= \\
t= & v_{x}=\frac{\Delta x}{t} &
\end{array}
$$

Sample Problem

- A chinchilla is seen running at $60 \mathrm{~m} / \mathrm{s}$ at the top of a 30 meter high cliff. If the chinchilla runs straight off of the cliff, how far away from the base of the cliff should the soft mattress be placed so that the chinchilla doesn't injure itself.
- First draw a picture and separate the information into X and Y information.

Sample Problem 2

- A wombat running with a velocity of $35 \mathrm{~m} / \mathrm{s}$ does not see the cliff ahead and runs horizontally off the cliff. If he lands in soft mud 40 meters from the base of the cliff, how high is the cliff?

Note there is $\underline{N O}$ acceleration in the X direction; therefore, the ONLY formula you may use is $v=\Delta x / t$

$$
\begin{aligned}
V_{x} & =\frac{\Delta X}{t} \\
35 \mathrm{~m} / \mathrm{s} & =\frac{40 \mathrm{~m}}{t} \quad t=1.14 \mathrm{sec}
\end{aligned}
$$

