

GAZELLES OUT OF CANNONS

Sample Problem
A gazelle is fired at $80 \mathrm{~m} / \mathrm{s}$ from a cannon inclined at an angle of 40 degrees above horizontal. If there is a tall fence located 50 meters from the gazelle, how high on the fence will the gazelle hit?

Resolve the vector

$V_{x}=80 \mathrm{~m} / \mathrm{s} \cos 40=61.28 \mathrm{~m} / \mathrm{s}$
$V_{\text {iy }}=80 \mathrm{~m} / \mathrm{s} \sin 40=51.42 \mathrm{~m} / \mathrm{s}$
SPLIT INFORMATION INTO X AND Y :

X	Y
$V_{x}=61.28 \mathrm{~m} / \mathrm{s}$	$V_{i}=51.42 \mathrm{~m} / \mathrm{s}$
$\Delta X=50 \mathrm{~m}$	$\mathrm{a}=-9.8 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{t}=?$	$\Delta Y=?$ $\mathrm{t}=?$

Practice Problem

A gazelle traveling $50 \mathrm{~m} / \mathrm{s}$ is launched at a 48 degree angle with respect to the horizontal.

How long, how high, and how far?

Practice Problem

A gazelle kicks a ball at an angle of 23 degrees at a velocity of 35 meters per second.

How long, how high, and how far?

X	Y	Use Y information to solve for time	
$\begin{aligned} & V_{x}=33.46 \mathrm{~m} / \mathrm{s} \\ & \Delta X=? \end{aligned}$	$V_{i}=37.16 \mathrm{~m} / \mathrm{s}$ $\mathrm{a}=-9.8 \mathrm{~s} / \mathrm{s}^{2}$	$V_{f}=V_{i}+a t$	
$\mathrm{t}=7.58 \mathrm{sec}$	$\begin{aligned} & V_{\mathrm{t}}=-37.16 \mathrm{~m} / \mathrm{s} \\ & \Delta Y=? \end{aligned}$	$\begin{aligned} & -37.16 \mathrm{~m} / \mathrm{s}=37.16 \mathrm{~m} / \mathrm{s}+\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right) t \\ & t=7.58 \mathrm{sec} \end{aligned}$	
$\mathrm{t}=$?		$V_{x}=\frac{\Delta X}{t}$	
Use $1 / 2$ time with Y information to solve for ΔY (how high?)			$33.46 \mathrm{~m} / \mathrm{s}=\frac{\Delta x}{7.58 \mathrm{~s}}$
$\Delta Y=V_{i} t+\frac{1}{2} a t^{2}$		$\Delta x=253.63 \mathrm{~m}$	
$\Delta Y=(37.16 \mathrm{~m} / \mathrm{s})(3.79 \mathrm{~s})+\frac{1}{2}\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(3.79 \mathrm{~s})^{2}$			
$\Delta Y=70.45 \mathrm{~m}$			

