Projectiles at an angle off a cliff

GAZELLES OUT OF CANNONS OFF CLIFFS

Sample Problem

An arrow is shot at an angle of 30 degrees above horizontal from a cliff that is 45 meters tall. The arrow leaves at a speed of $14 \mathrm{~m} / \mathrm{s}$. How much time to reach maximum height above cliff? What is maximum height above the cliff? What is the total time the arrow is in the air? How far from the base of the cliff does the arrow land?
FIRST DRAW A PICTURE AND RESOLVE THE VELOCITY INTO X AND Y COMPONENTS:
$V_{\mathrm{x}}=14 \mathrm{~m} / \mathrm{s} \cos 30=12.12 \mathrm{~m} / \mathrm{s}$ $V_{\text {iy }}=14 \mathrm{~m} / \mathrm{s} \sin 30=7.0 \mathrm{~m} / \mathrm{s}$

Now look at the questions. . .

- how much time to maximum height above cliff? Hmmmmm. . . .
$>$ the positive root was TOTAL time. . . 3.83 sec
-What is y velocity when it returns to cliff level?
$>-7 \mathrm{~m} / \mathrm{s}$ (this is conceptual. . . no math needed)

-Maximum height above cliff?

$>$ Time to maximum height is 0.72 sec
Sample Problem
$>\mathrm{V}_{\text {iy }}=7.0 \mathrm{~m} / \mathrm{s}$
$>\mathrm{a}=-9.8 \mathrm{~m} / \mathrm{s}^{2}$

$$
\Delta y=V_{i} t+\frac{1}{2} a t^{2}
$$

$\Delta y=(7.0 \mathrm{~m} / \mathrm{s})(0.72 \mathrm{~s})+\frac{1}{2}\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(0.72 \mathrm{~s})^{2}$

$$
\Delta y=2.50 m
$$

How high relative to the ground?

X	Y	
$\mathrm{V}_{\mathrm{x}}=29.02 \mathrm{~m} / \mathrm{s}$	$\mathrm{V}_{\mathrm{i}}=19.57 \mathrm{~m} / \mathrm{s}$	negative root $=-2.28 \mathrm{sec}$
$\Delta \mathrm{X}=$?	$\mathrm{a}=-9.8 \mathrm{~m} / \mathrm{s}^{2}$	Time above cliff 6.27-2.28 $=3.99 \mathrm{sec}$
$t=$	$\begin{aligned} & \Delta \mathrm{Y}=? \\ & \mathrm{t}=\square \quad \mathrm{sec} \end{aligned}$	Time to max height is $3.99 / 2=1.995 \mathrm{sec}$

$$
\Delta Y=V_{i} t+\frac{1}{2} a t^{2}
$$

$$
\Delta Y=(19.57 m / s) 1.995+\frac{1}{2}\left(-9.8 m / \mathrm{s}^{2}\right)(1.995)^{2}
$$

$$
\Delta Y=39.04-19.50
$$

$$
\Delta Y=19.54 m
$$

$$
70 \mathrm{~m}+19.54 \mathrm{~m}=89.54 \mathrm{~m} \text { (relative to the ground) }
$$

