Forces

Force Diagrams (FBD)
Net Force Equations

Forces

>A force is a push or pull upon an object resulting from the object's interaction with another object.
$>$ Whenever there is an interaction between two objects, there is a force upon each of the objects.
> When the interaction ceases, the two objects no longer experience the force.
> Forces only exist as a result of an interaction

Types of Forces

Applied Force- F_{a} $>$ Gravity Force (also known as Weight) - F_{g} Or W
$>$ Normal Force- F_{N}
$>$ Friction Force- F_{fk} or F_{fs} or F_{f}
$>$ Tensional Force- F_{t} or T
$>$ Air Resistance Force- $\mathrm{F}_{\text {air }}$
$>$ Note that each of these begins with an F, and the subscript tells which type

Force Diagrams

$>$ Referred to as free-body diagrams
> Shows only 1 object and all the forces acting on it
> Is used to find the net external force acting on a thing-using vector analysis
$>$ Net external force is the vector sum of all the forces acting on an object - if an object is not moving or is moving with a constant velocity, then there is no acceleration and the net force is equal to 0 .

Normal Force

- A physics text book weighing 20 N is sitting on a table.
- Gravity is pulling down with a force of 20 N .
- The table is pushing up with a force of 20 N (Newton's 3rd Law)

Practice

Find the net Force ($\Sigma \mathrm{F}$) acting upon the object.

Net Force Equations

Remember $\Sigma \mathrm{F}=\mathrm{ma}$
Write net force equations for the X and Y

Let's try drawing one!

Starting simple: a kid pulling a sled
What are the forces involved?
Normal Force, Weight, \& Tension

Practice

Net Force Equations

Remember $\Sigma \mathrm{F}=\mathrm{ma}$
Write net force equations for the X and Y

