

Friction

- FRICTION: The force that opposes motion
- ($F_{\text {FS }}$) Static Friction: the force you need to overcome to set an object into motion
- (F_{FK}) Kinetic Friction: the force you need to overcome to keep an object in motion
- It is always harder to start an object than to keep it moving
$\mathrm{F}_{\mathrm{FS}}>\mathrm{F}_{\mathrm{FK}}$

$$
\begin{array}{ll}
\mathrm{F}_{\mathrm{FS}}=\mathrm{F}_{\mathrm{N}} * \mu_{\mathrm{S}} & \begin{array}{l}
\left(\mathrm{F}_{\mathrm{N}}=\text { Normal Force }\right) \\
\\
\left(\mu_{\mathrm{S}}=\text { coefficient of static friction }\right)
\end{array} \\
\mathrm{F}_{\mathrm{FK}}=\mathrm{F}_{\mathrm{N}} * \mu_{\mathrm{K}} & \begin{array}{l}
\left(\mathrm{F}_{\mathrm{N}}=\text { Normal Force }\right) \\
\left(\mu_{\mathrm{K}}=\text { coefficient of kinetic friction }\right)
\end{array}
\end{array}
$$

Sample

You push horizontally on a 60 kg gazelle as shown in the picture. If $\mu_{\mathrm{S}}=0.08$ and $\mu_{\mathrm{K}}=0.05$ how far will the gazelle travel in 4.0 seconds if it starts from rest?

200 N

DETERMINE IF THE OBJECT WILL MOVE

$$
\begin{gathered}
\text { (is } \mathbf{F}_{\mathbf{x}}>\mathbf{F}_{\mathbf{F S}} \text {) } \\
\mathrm{F}_{\mathrm{X}}=200 \mathrm{~N} \quad \begin{array}{c}
\mathrm{F}_{\mathrm{FS}}=\mathrm{F}_{\mathrm{N}} * \mu_{\mathrm{s}} \\
\mathrm{~F}_{\mathrm{FS}}=588 \mathrm{~N}(0.08)=47.04 \mathrm{~N} \\
200 \mathrm{~N}>47.04 \mathrm{~N} \\
\text { It will move! }
\end{array}
\end{gathered}
$$

USE $\Sigma \mathrm{F}_{\mathrm{x}}$ TO SOLVE FOR a_{x} AND THEN USE A KINEMATIC AS NEEDED
$200 \mathrm{~N}-\mathrm{F}_{\mathrm{FK}}=60 \mathrm{~kg} \mathrm{a} \mathrm{a}_{\mathrm{x}}$

$$
200 \mathrm{~N}-588 \mathrm{~N}(0.05)=60 \mathrm{~kg} \mathrm{a} \mathrm{a}_{\mathrm{x}}
$$

$$
\mathrm{a}_{\mathrm{x}}=2.84 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
\mathrm{v}_{\mathrm{i}}=0 \mathrm{~m} / \mathrm{s}
$$

$$
\Delta x=v_{i} t+\frac{1}{2} a t^{2}
$$

$\mathrm{a}=2.84 \mathrm{~m} / \mathrm{s}^{2}$
$t=4.0 \mathrm{sec}$
$\Delta x=(0 \mathrm{~m} / \mathrm{s}) t+\frac{1}{2}\left(2.84 \mathrm{~m} / \mathrm{s}^{2}\right)(4.0 \mathrm{~s})^{2}$
$\Delta \mathrm{x}=$?

$$
\Delta x=22.75 \mathrm{~m}
$$

Sample

The truck is moving at $20 \mathrm{~m} / \mathrm{s}$ to the right. The coefficient of static friction between the truck and the gazelle is 0.5 . What is the shortest time it will take the truck stop without the gazelle sliding into the cab of the truck?

$$
\begin{array}{lc}
\mathrm{F}_{\mathrm{FK}}=\mathrm{F}_{\mathrm{N}} \mu_{k}=\mathrm{mg} \mu_{k} & -\operatorname{mg} \mu_{\mathrm{k}}=\mathrm{m} \mathrm{a}_{\mathrm{x}} \\
& -9.8 \mathrm{~m} / \mathrm{s}^{2}(0.5)=\mathrm{a}_{\mathrm{x}} \\
\mathrm{a}_{\mathrm{x}}=-4.9 \mathrm{~m} / \mathrm{s}^{2} \\
& \\
\mathrm{v}_{i}=20 \mathrm{~m} / \mathrm{s} & v_{f}=v_{i}+a t \\
\mathrm{a}=-4.9 \mathrm{~m} / \mathrm{s}^{2} & 0 \mathrm{~m} / \mathrm{s}=20 \mathrm{~m} / \mathrm{s}+\left(-4.9 \mathrm{~m} / \mathrm{s}^{2}\right) t \\
\mathrm{v}_{f}=0 \mathrm{~m} / \mathrm{s} & t=4.08 \mathrm{~s} \\
t=? &
\end{array}
$$

DRAW FBD

(of the gazelle)

WRITE NET FORCE EQUATIONS FOR BOTH X AND Y DIRECTIONS

$$
\begin{gathered}
\Sigma \mathrm{F}_{\mathrm{x}}:-\mathrm{F}_{\mathrm{fk}}=\mathrm{ma}_{\mathrm{x}} \\
\Sigma \mathrm{~F}_{\mathrm{y}}: \mathrm{F}_{\mathrm{N}}-\mathrm{F}_{\mathrm{g}}=\mathrm{ma}_{\mathrm{y}} \\
\mathrm{~F}_{\mathrm{N}}-\mathrm{mg}=60(0) \\
\mathrm{F}_{\mathrm{N}}=\mathrm{mg}
\end{gathered}
$$

Solving Force Problems

1. Resolve the vectors.

2. Draw Free Body Diagrams (FBD).
3. Write the net force equations.
4. Plug in numbers and solve for normal force F_{N}.
5. Determine if the object will move. Is the force applied greater than the static frictional force ($F_{x}>F_{f s}$)?
6. Use F_{x} and kinetic frictional force ($F_{f k}$) to solve for a_{x}. 7. Use a kinematic equation as needed.

Practice

You push horizontally on a 40 kg gazelle as shown in the picture. What is the normal force? How much force is needed to start the gazelle moving ($\mu_{\mathrm{S}}=0.189$ and $\mu_{\mathrm{K}}=0.085$)?

Solve for static friction force

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{Fs}}=\mathrm{F}_{\mathrm{N}} * \mu_{\mathrm{s}} \\
& \mathrm{~F}_{\mathrm{Fs}}=392 \mathrm{~N}(0.189) \\
& \mathrm{F}_{\mathrm{Fs}}=74 \mathrm{~N}
\end{aligned}
$$

Solve for the force needed to start the gazelle moving

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{x}}-\mathrm{F}_{\mathrm{Fs}}=40 \mathrm{~kg}\left(0 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& \mathrm{F}_{\mathrm{x}}=\mathrm{F}_{\mathrm{Fs}} \\
& \mathrm{~F}_{\mathrm{x}}=74 \mathrm{~N}
\end{aligned}
$$

WRITE NET FORCE EQUATIONS FOR BOTH X AND Y

 DIRECTIONS$\Sigma \mathrm{F}_{\mathrm{x}}: \quad \mathrm{F}_{\mathrm{x}}-\mathrm{F}_{\mathrm{Fk}}=\mathrm{ma}_{\mathrm{x}}$
$\Sigma \mathrm{F}_{\mathrm{y}}: \mathrm{F}_{\mathrm{N}}-\mathrm{F}_{\mathrm{g}}=\mathrm{ma}_{\mathrm{y}}$
$\mathrm{F}_{\mathrm{N}}-392 \mathrm{~N}=40 \mathrm{~kg}\left(0 \mathrm{~m} / \mathrm{s}^{2}\right)$ $\mathrm{F}_{\mathrm{N}}=392 \mathrm{~N}$

SOLVE FOR KINETICE FRICTION FORCE

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{Fk}}=\mathrm{F}_{\mathrm{N}} \mu_{\mathrm{k}} \\
& \mathrm{~F}_{\mathrm{Fk}}=(392 \mathrm{~N})(0.085) \\
& \mathrm{F}_{\mathrm{Fk}}=33.32 \mathrm{~N}
\end{aligned}
$$

What would the acceleration of the gazelle be if you applied 100 N of force more than was needed to start it moving?

SUBSTITUTE IN THE ΣF_{x} AND SOLVE FOR

 ACCELERATION$$
\begin{aligned}
\Sigma \mathrm{F}_{\mathrm{x}}: & \mathrm{F}_{\mathrm{x}}-\mathrm{F}_{\mathrm{Fk}}=\mathrm{ma}_{\mathrm{x}} \\
& 174 \mathrm{~N}-33.32 \mathrm{~N}=(40 \mathrm{~kg}) \mathrm{a} \\
& 140.68 \mathrm{~N}=(40 \mathrm{~kg}) \mathrm{a} \\
& 3.52 \mathrm{~m} / \mathrm{s}^{2}=\mathrm{a}
\end{aligned}
$$

