

USE ΣF_{X} TO SOLVE FOR a_{x} AND THEN USE A KINEMATIC AS NEEDED

DETERMINE IF THE OBJECT WILL MOVE

$$
\begin{array}{ll}
& \text { (is } \mathbf{F}_{\mathbf{x}}>\mathbf{F}_{\mathbf{F S}} \text {) } \\
\mathrm{F}_{\mathrm{X}}=100 \mathrm{~N} \quad & \mathrm{~F}_{\mathrm{FS}}=\mathrm{F}_{\mathrm{N}} * \mu_{\mathrm{s}} \\
& \mathrm{~F}_{\mathrm{FS}}=761.2 \mathrm{~N}(0.08)=60.88 \mathrm{~N} \\
& \\
& 100 \mathrm{~N}>60.88 \mathrm{~N} \\
& \text { It will move! }
\end{array}
$$

Sample

You push on a 60 kg gazelle as shown in the picture. If $\mu_{\mathrm{S}}=0.08$ and $\mu_{\mathrm{K}}=0.05$ what is the gazelles acceleration?

$$
\begin{aligned}
& 100 \mathrm{~N}-\mathrm{F}_{\mathrm{FK}}=60 \mathrm{~kg} \mathrm{a} \mathrm{a}_{\mathrm{x}} \\
& 100 \mathrm{~N}-761.2 \mathrm{~N}(0.05)=60 \mathrm{~kg} \mathrm{a} \mathrm{a}_{\mathrm{x}} \\
& \mathrm{a}_{\mathrm{x}}=1.03 \mathrm{~m} / \mathrm{s}^{2} \\
& \mathrm{v}_{\mathrm{i}}=0 \mathrm{~m} / \mathrm{s} \\
& \Delta x=v_{i} t+\frac{1}{2} a t^{2} \\
& \mathrm{a}=1.03 \mathrm{~m} / \mathrm{s}^{2} \\
& t=4.0 \mathrm{sec} \\
& \Delta x=(0 \mathrm{~m} / \mathrm{s}) t+\frac{1}{2}\left(1.03 \mathrm{~m} / \mathrm{s}^{2}\right)(4.0 \mathrm{~s})^{2} \\
& \Delta x=\text { ? } \\
& \Delta x=8.26 m
\end{aligned}
$$

Solving Force Problems

1. Resolve the vectors.
2. Draw Free Body Diagrams (FBD).
3. Write the net force equations.
4. Plug in numbers and solve for normal force F_{N}.
5. Determine if the object will move. Is the force applied greater than the static frictional force ($F_{x}>F_{f s}$)?
6. Use F_{x} and kinetic frictional force ($F_{f k}$) to solve for a_{x}.
7. Use a kinematic equation as needed.

DETERMINE IF THE OBJECT WILL MOVE
(is $\mathrm{F}_{\mathrm{x}}>\mathrm{F}_{\mathrm{FS}}$)
$\mathrm{F}_{\mathrm{X}}=26.77 \mathrm{~N} \quad \mathrm{~F}_{\mathrm{FS}}=\mathrm{F}_{\mathrm{N}} * \mu_{\mathrm{s}}$
$\mathrm{F}_{\mathrm{FS}}=53.57 \mathrm{~N}(0.48)=25.71 \mathrm{~N}$
$26.77 \mathrm{~N}>25.71 \mathrm{~N}$
It will move!

USE Σ FX TO SOLVE FOR a_{x} AND THEN USE A KINEMATIC AS NEEDED

$$
\begin{aligned}
& 26.77 \mathrm{~N}-\mathrm{F}_{\mathrm{FK}}=(8.5 \mathrm{~kg}) \mathrm{a}_{\mathrm{x}} \\
& 26.77 \mathrm{~N}-53.57 \mathrm{~N}(0.27)=(8.5 \mathrm{~kg}) \mathrm{a}_{\mathrm{x}} \\
& \mathrm{a}_{\mathrm{x}}=1.45 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

