

The use of kinematic equations is banned until further notice. The use of a kinematic equation in solving a problem will result in double points being deducted!!!!

Work and Energy Chapter 5

Work

- W = F $\cdot \mathbf{d}$
- Since $\Sigma \mathrm{F}=\mathrm{ma}$, we can substitute "ma" into the work equation for " F ", giving us
- W = mad

Work
• $\mathbf{W}=\mathbf{F} \cdot \mathbf{d}$
• Since $\Sigma \mathrm{F}=$ ma, we can substitute
"ma" into the work equation for " F ",
giving us
• $\mathbf{W}=$ mad

Work

- Work is done when a force moves an object through a distance against another force.
- For example, when I lift a book I do work against gravity.
- If I push the book along the tabletop, I do work against friction.
- Work = Force • distance ("dot product")
- $\mathbf{W}=\mathbf{F} \cdot \mathbf{d} \quad \mathbf{W}=\mathbf{F} \| \mathbf{d} \quad \mathbf{W}=\mathrm{Fd} \cos \theta$
- "Visual Trig"
- Vector Addition

Sample

- It takes $1,875 \mathrm{~J}$ of work to move a box 15 meters. How much force was needed?

$$
\begin{gathered}
W=F \cdot d \\
1875 \mathrm{~J}=F \cdot 15 \mathrm{~m} \\
F=125 \mathrm{~N}
\end{gathered}
$$

Sample

- How much work is done if a 1500 kg car accelerates at a rate of $3.0 \mathrm{~m} / \mathrm{s}^{2}$ for a distance of 100 meters.

$$
\begin{gathered}
W=F \cdot d=m a \cdot d \\
W=(1500 \mathrm{~kg})\left(3.0 \mathrm{~m} / \mathrm{s}^{2}\right) \cdot 100 \mathrm{~m}
\end{gathered}
$$

$$
W=450,000 \mathrm{~J}
$$

Kinetic Energy
 Gravitational Potential Energy

- Kinetic Energy (KE) - the ability of an object to do work because of its motion.

$$
K E=\frac{1}{2} m v^{2}
$$

Gravitational Potential Energy $\left(\right.$ PE $\left._{G}\right)$ - the ability of an object to do work because of its position in a gravitational field

$$
\mathrm{PE}_{\mathrm{G}}=\mathrm{mgh}
$$

Energy

- Energy is the ability to do work. In other words, it is work waiting to happen.
- Types of Energy-some examples are
$>$ Kinetic-energy of motion (KE)
> Gravitational potential-energy given an object when you lift it up (It can fall) (PE ${ }_{G}$)
- Elastic or spring potential-stored in a spring or rubber band when you stretch or compress it (PE_{s})
$>$ Heat (Q)
$>$ Chemical potential
> Nuclear
\Rightarrow Sound
$>$ Light

Sample

- What is the kinetic energy of a 30 kg gazelle running at $20 \mathrm{~m} / \mathrm{s}$?

$$
\begin{gathered}
K E=\frac{1}{2} m v^{2} \\
K E=\frac{1}{2}(30 \mathrm{~kg})(20 \mathrm{~m} / \mathrm{s})^{2} \\
K E=6,000 \mathrm{~J}
\end{gathered}
$$

Practice

1. If it takes 1500 J of work to stop a 50 kg running gazelle, how fast was the gazelle initially running?
2. 4500 J of work are done to lift a 10 kg baby gazelle to the top of a cliff. How high is the cliff?
