Conservation of Energy

coe

COE

- Example:
>1 do some number of Joules of work lifting my book into the air.
$>$ Now, in its position up in the air, the book has that same number of Joules of gravitational potential energy.
$>$ If I drop the book, it is capable of doing the same number of Joules of work on an egg which is sitting on the floor.
$>$ Work $=$ energy $=$ work

LAW OF CONSERVATION OF ENERGY-COE

- Energy can't be created or destroyed.
- It can be changed from one form to another.
- W = E
- Work = Energy
- Work and energy are two sides of the same coin.
- One can be changed into the other.
- The unit for both is Joules, symbol is " J "

COE

- In terms of energy, the book has gravitational potential energy in its lifted position.
- Halfway down it has half as much gravitational potential energy, but it also has some kinetic energy because it is moving.
- When it reaches the ground it has all kinetic and no gravitational potential because height is zero.
- The amount of kinetic at the bottom is equal to the amount of gravitational potential that it had at the top.
- $P E_{G}=K E$

COE

- $\mathrm{W}=\mathrm{Fd}=\operatorname{mad}=\mathrm{E}=\mathrm{PE}_{\mathrm{G}}=\mathrm{mgh}=\Delta \mathrm{KE}=$ $\left(1 / 2 m v_{f}^{2}-1 / 2 m v_{i}^{2}\right)$
$>$ W = work
$>E=$ Energy
$>\mathrm{PE}_{\mathrm{G}}=$ gravitational potential energy
$>K E=$ kinetic energy
$>Q=$ heat

Example

- What is the final velocity of 1500 kg car if $450,000 \mathrm{~J}$ of net work is applied to accelerate that car from rest?

$$
\begin{gathered}
\Sigma W=\Delta K E \quad \text { Work-Energy Theorem } \\
450,000 \mathrm{~J}=\frac{1}{2}(1500 \mathrm{~kg}) v_{f}^{2}-\frac{1}{2}(1500 \mathrm{~kg}) v_{i}^{2} \\
450,000 \mathrm{~J}=\frac{1}{2}(1500 \mathrm{~kg}) v_{f}^{2} \\
v_{f}=24.49 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Practice

- I apply 10 N of force to a 10 kg chair and move it 50 meters. How fast is it moving?
- Solution:
$\Sigma \mathrm{W}=\Delta \mathrm{KE}$ (The work I did became the
\quad kinetic energy of the chair)
$\mathrm{Fd}=1 / 2 \mathrm{mv}_{\mathrm{f}}^{2}-1 / 2 \mathrm{mv}_{\mathrm{i}}^{2}$
$10 \mathrm{~N}(50 \mathrm{~m})=1 / 2(10 \mathrm{~kg}) \mathrm{v}_{\mathrm{f}}^{2}-1 / 2(10 \mathrm{~kg})(0 \mathrm{~m} / \mathrm{s})^{2}$
$\mathrm{v}=10 \mathrm{~m} / \mathrm{s}$

Practice

- I do 600 Joules of work to lift a 10 kg bucket. How much gravitational potential energy does it have?
Answer: 600 J because $\mathbf{W}=\mathbf{E}$
- How high does it go?
$\mathrm{W}=\mathrm{E}=\mathrm{PE} \mathrm{E}_{\mathrm{G}}=\mathrm{mgh}$
So, $W=m g h$
$600 \mathrm{~J}=10 \mathrm{~kg}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \mathrm{h}$
$\mathrm{h}=6.12 \mathrm{~m}$

COE

- Energy can be neither created nor destroyed . . it may be converted from one form to another.

$$
\text { - } \mathrm{E}_{\text {"start" }}=\mathrm{E}_{\text {"end" }}
$$

- The energy at the "start" must be equal to the energy at the "end"
- The "start" and "end" of a problem are arbitrary points.

Solving COE Problems

- At the "start"
- Can it Fall
- Yes add PE_{G}
- Is it Moving
-Yes add KE
- Is work being done -Yes add W
- Is there a spring - Yes add PE_{s}
- At the "end"
- Can it Fall
-Yes add PE_{G}
- Is it Moving
-Yes add KE
- Is there Friction
- Yes add \mathbf{Q}
- Is there a spring - Yes add PE_{s}

Practice

Tarzan standing on a 20 meter high cliff swings on a vine to the jungle floor below. How fast is Tarzan traveling when he reaches the jungle floor?

Tarzan Yell

COE:
$P E_{G}=K E$
1st substitution: phgh = $1 / 2$ وh v^{2}

Number substitution:

$$
\left(9.8 \mathrm{~m} / \mathrm{s} / \mathrm{s}^{*} 20 \mathrm{~m}\right)=\left(1 / 2 \mathrm{v}^{2}\right)
$$

