HOOKE'S LAW

The restoring force of a spring is proportional to and in the opposite direction ٠ of the displacement of the spring.

• F = -KX

- F = restoring force (N)
- K = spring constant (N / m). . .the larger the spring constant the stronger the spring
- X = displacement of the spring from its normal resting position (m)

COE & Spring Potential Energy

• A spring can store energy if it is stretched or compressed from its normal resting position.

 $PE_{s} = 1/2 K X^{2}$

PE_c = spring potential energy (J) K = spring constant (N/m) X = displacement (m)

- Is work being done -Yes add W
- Is there a spring -Yes add PE,
- Is there Friction -Yes add Q
- Is there a spring -Yes add PE,

Solving COE Problems	
 At the "start" 	 At the "end"
 Can it <i>Fall</i> 	• Can it <i>Fall</i>
– Yes add PE_g	– Yes add PE_g
 Is it Moving 	 Is it Moving
– Yes add KE	– Yes add KE
 Is work being done 	• Is there <i>Friction</i>
– Yes add W	– Yes add Q
 Is there a spring 	 Is there a spring
– Yes add PE s	– Yes add PE s
Ι	