Review for Test 8 Optics

	12		
1	600		
	1	3	

1.	What type of image can a flat mirror produce?
	Virtual, upright, same sized
2.	For a flat mirror, if the angle of incidence is 37 degrees what is the angle of reflection?
	37°
3.	What determines the distance to the image produced by a flat mirror?
	the distance of the object
4.	A diver shines a flashlight upward from beneath the water at a 31 degree angle to the vertical. At what angle does the light leave the water? $(33 \sin(31)) = 1 \sin(31)$
	1, sino; = 1/2 sino, 0, = sin' (1.33 sin(319) = 43.24°
5.	What is the critical angle if light emerges from a diamond into water? $(n_{diamond} = 2.42; n_{water} = 1.33)$
	1, Sind = 12 sind, 2.42 sinte = 12 0 = sin'(13) = sin'(1.33)
6.	The speed of fight in ice is 2.29 E 8 m/s. What is the index of refraction of ice?
	$n = \frac{c}{\sqrt{1000}} = \frac{3ER}{2.29E8} = \frac{1.31}{1.31}$
7.	in 1. 1. C' and the bound struct the symbols at an angle of incidence of 27 degrees?
	In a block of ice and the beam struck the surface at all angle of incidence of 37 degrees: $0 = 37$ $0 = 1.31$ $0.5 \text{ ind} = 0.25 \text{ ind}$ A beam of light strikes a pane of glass at an angle of incidence of 60 degrees. If the angle of refraction is 35
8.	A beam of light strikes a pane of glass at an angle of incidence of 60 degrees. If the angle of refraction is 35
	degrees, find the index of refraction of the glass. $n_z = \frac{\sin(60)}{\sin(35)} = \frac{1.51}{\sin(35)}$ When light travels from a less optically dense material to a more optically dense material. Does it speed up or
	$\theta_c = 35^\circ$ $n_i = (8in(60^\circ) = n_z sin(35^\circ)$
9.	slow down? Does it bend towards or away from the normal?
10	When light travels from a more optically dense material to a less optically dense material. Does it speed up or
10.	slow down? Does it bend towards or away from the normal?
11	slow down? Does it bend towards or away from the normal? speed up bend away (fluse two are Snells Law) What is the critical angle?
12.	What is total internal reflection?
13.	What is the index of refraction?
14.	Why does light refract?
15.	What type of image can a convex lens make?
16.	Convex lens converge or diverge light rays; positive or negative focal point?
As	well as having a comprehensive knowledge of the above topics, you should also review the formation on pages 572-575; 580-595; 600 –615; and 619-621 of your text.
	$c = f\lambda$ $n_1 \sin \theta_i = n_2 \sin \theta_r$ $n_{air} = 1$ $c = 3E8m/s$
	$n = \frac{c}{v} \qquad \sin \theta_c = \frac{n_2}{n_1} \qquad \frac{1}{f} = \frac{1}{d_i} + \frac{1}{d_o} m = \frac{H_i}{H_o} = \frac{-d_i}{d_o}$